有限域FP上的DFT在秘密共享中的应用

Application of DFT Over Finite Field FP in the Secret Sharing Scheme

  • 摘要: 为了提高Shamir (m,n)门限方案中的n个共享的生成速度和m个共享者恢复密钥的运算速度,将Shamir (m,n)门限方案中采用拉格朗日插值法生成n个共享和m个共享者恢复密钥的方法,改为利用有限域上的离散傅里叶变换(DFT)来实现。由于有限域上的DFT也具循环卷积性和类似复数域上FFT的快速算法,从而可以提高n个共享的生成速度。当m >n/2时,能够提高可信中心构作n个共享的运算速度,特别当门限数m与共享数n相等且为2的方幂时,还能够提高共享者恢复密钥的运算速度。

     

    Abstract: In order to increase the calculation speed of the n sharing's generation and the m partners to recover the secret in Shamir(m,n) threshold scheme, the discrete Fourier transform (DFT) over finite field is adopted other than the classical Lagrange interpolation. Because the DFT over finite field has some similar properties of the DFT over complex, such as the cycling convolution and the FFT algorithm, this method can improve the efficient of Shamir(m,n) threshold scheme. If m >n/2, it can increase the calculation speed of the trust center to divide the key to n sharing components. Moreover, if m=n and it is the power of 2, this scheme can increase the calculation speed of the partners to recover the secret key.

     

/

返回文章
返回