采用数据挖掘的拒绝服务攻击防御模型

A DoS Attack Defense Model Adopting Data Mining

  • 摘要: 针对拒绝服务攻击的特点,提出了一种采用数据挖掘技术的防御模型。该模型以实时抽样流量作为数据来源,采用关联分析法提取可信IP列表用于数据包的过滤,并利用贝叶斯分类算法对数据包的危险等级进行评估。该模型弥补了传统的基于可信IP列表过滤的不足,并在防御攻击时能有效区分正常流量与异常流量。实验证明该模型能够对拒绝服务攻击进行有效、实时的防御。

     

    Abstract: According to the characteristics of DoS/DDoS attack, a defense model adopting data-mining technology is proposed. Based on real-time sample traffic, this model extracts trusted IP list by association analysis to filter, and evaluates packets' danger degree by adopting bayes algorithm. This model makes up disadvantages of traditional filtering based on trusted source IP, and effectively differentiates normal traffic and abnormal traffic. Experimental datum proves this model can launch real-time and effective defense against DoS/DDoS attack.

     

/

返回文章
返回