基于任务队列的新闻报道模型

尤志强, 朱燕燕, 韩筱璞, 吕琳媛

尤志强, 朱燕燕, 韩筱璞, 吕琳媛. 基于任务队列的新闻报道模型[J]. 电子科技大学学报, 2016, 45(2): 295-300.
引用本文: 尤志强, 朱燕燕, 韩筱璞, 吕琳媛. 基于任务队列的新闻报道模型[J]. 电子科技大学学报, 2016, 45(2): 295-300.
YOU Zhi-qiang, ZHU Yan-yan, HAN Xiao-pu, Lü Lin-yuan. Queuing Model for News Reports[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 295-300.
Citation: YOU Zhi-qiang, ZHU Yan-yan, HAN Xiao-pu, Lü Lin-yuan. Queuing Model for News Reports[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 295-300.

基于任务队列的新闻报道模型

详细信息
  • 中图分类号: N94

Queuing Model for News Reports

  • 摘要: 基于新浪新闻数据,对热点新闻的连续发表事件时间间隔序列进行了统计分析,以探究新闻内容的选择机制。实证发现该时间间隔分布在个类与总体层面上都遵循带指数截断的幂律分布,由此提出一种考虑时效性的,并基于严格优先及偏好优先选择混合机制的队列模型来揭示新闻选择背后的机制。该模型的数值模拟结果与实证统计数据较好地吻合,表明该模型规则在一定程度上可用于解释新闻报道中出现的非泊松时间特性。
  • [1]

    LÜ L, CHEN D B, ZHOU T. The small world yields the most effective information spreading[J]. New Journal of Physics, 2011, 13(12): 123005.

    [2]

    YANG J, COUNTS S. Predicting the speed, scale, and range of information diffusion in twitter[J]. ICWSM, 2010(10): 355-358.

    [3]

    IRIBARREN J L, MORO E. Impact of human activity patterns on the dynamics of information diffusion[J]. Physical Review Letters, 2009, 103(3): 038702.

    [5]

    IRIBARREN J L, MORO E. Branching dynamics of viral information spreading[J]. Physical Review E, 2011, 84(4): 046116.

    [6]

    DOERR B, FOUZ M, FRIEDRICH T. Why rumors spread so quickly in social networks[J]. Communications of the ACM, 2012, 55(6): 70-75.

    [7]

    LIND P G, DA SILVA L R, ANDRADE J J S, et al. Spreading gossip in social networks[J]. Physical Review E, 2007, 76(3): 036117.

    [8]

    MONTANARI A, SABERI A. The spread of innovations in social networks[J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20196-20201.

    [9]

    MIRITELLO G, MORO E, LARA R. Dynamical strength of social ties in information spreading[J]. Physical Review E, 2011, 83(4): 045102.

    [10]

    PFITZNER R, GARAS A, SCHWEITZER F. Emotional divergence influences information spreading in twitter[J]. ICWSM, 2012(12): 2-5.

    [11]

    CHEN Y Y, CHEN F, GUNNELL D, et al. The impact of media reporting on the emergence of charcoal burning suicide in Taiwan[J]. PloS One, 2013, 8(1): e55000.

    [12]

    BARABÁSI A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039): 207-211.

    [13]

    GONZALEZ M C, HIDALGO C A, BARABASI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779-782.

    [14]

    SONG C, QU Z, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968): 1018-1021.

    [15]

    BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439(7075): 462-465.

    [16]

    MALMGREN R D, STOUFFER D B, MOTTER A E, et al. A Poissonian explanation for heavy tails in e-mail communication[J]. Proceedings of the National Academy of Sciences, 2008, 105(47): 18153-18158.

    [17]

    OLIVEIRA J G, BARABÁSI A L. Human dynamics: Darwin and Einstein correspondence patterns[J]. Nature, 2005, 437(7063): 1251-1251.

    [18]

    HONG W, HAN X P, ZHOU T, et al. Heavy-tailed statistics in short-message communication[J]. Chinese Physics Letters, 2009, 26(2): 028902.

    [19]

    CANDIA J, GONZÁLEZ M C, WANG P, et al. Uncovering individual and collective human dynamics from mobile phone records[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(22): 224015.

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  5283
  • HTML全文浏览量:  156
  • PDF下载量:  324
  • 被引次数: 2
出版历程
  • 刊出日期:  2016-04-14

目录

    /

    返回文章
    返回