Object Joint Optimization Tracking Based on Gray-Level Co-Occurrence and Multi-Clues
-
摘要: 为了提高跟踪算法对多种目标表观变化场景的自适应能力与跟踪精度,提出一种基于灰度共生的多线索目标联合优化跟踪算法。该算法首先提取目标灰度信息,通过灰度共生的高区分度特征对目标进行二元超分描述,结合三阶张量理论融合目标区域的多视图信息,建立起目标的三维在线表观模型,然后利用线性空间理论对表观模型进行双线性展开,通过双线性空间的增量学习更新,降低模型更新时的运算量。通过二级联合跟踪机制对跟踪估计进行动态调整,以避免误差累积出现跟踪漂移。与典型算法进行多场景试验对比,表明该算法能有效地应对多种复杂场景下的运动目标跟踪。
-
[1] YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831. [2] HO J, LEE K C, YANG M H, et al. Visual tracking using learned linear subspaces[C]//Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2012. [3] LEE K C, KRIEGMAN D. Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2013. [4] ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2013, 77(1-3): 125-141. [5] LATHAUWER L, MOOR B, VANDEWALLE J. On the best rank-1 and rank-(R1, R2,..., Rn) approximation fhigherorder tensors[J]. SIAM Journal of Matrix Analysis and Applications, 2000, 21(4): 1324-1342. [6] LI X, HU W, ZHANG Z, et al. Visual tracking via incremental Log-Euclidean Riemannian sub-space learning [C]//IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2013. [7] LI X, HU W, ZHANG Z, et al. Robust visual tracking based on incremental tensor subspace learning[C]//International Conference on Computer Vision. [S.l.]: [s.n.], 2012. [8] 薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2014, 34(1): 155-158. BO Hua, MA Fu-long, JIAO Li-cheng. Research on computation of GLCM of image texture[J]. Acta Electronica Sinica, 2014, 34(1): 155-158. [9] CLAUSI D A, HUANG D. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities[J]. IEEE Trans on Image Processing, 2013, 14(7): 925-936. [10] WU Y, LIM J, YANG M H. Object tracking benchmark[J]. Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. [11] KHAN Z H, GU I Y H. Online domain-shift learning and object tracking based on nonlinear dynamic models and particle filters on Riemannian manifolds[J]. Computer Vision and Image Understanding, 2014, 125: 97-114. [12] CHENG X, LI N, ZHOU T, et al. Object tracking via collaborative multi-task learning and appearance model updating[J]. Applied Soft Computing, 2015, 31: 81-90.
点击查看大图
计量
- 文章访问数: 4651
- HTML全文浏览量: 103
- PDF下载量: 245
- 被引次数: 0