Dirichlet Free-Form Deformation in Three-Dimensional Space
-
摘要: 自由变形是与物体表示无关的变形方法的重要分支,被广泛地应用于计算机动画和几何建模领域中。Dirichlet自由变形是众多自由变形方法中的一种,相比其他的自由变形方法,它有更大的灵活性,能够任意设置控制点。Dirichlet自由变形算法在二维空间已获得了广泛的应用,但在三维空间中的应用却非常少。该文研究Dirichlet自由变形算法在三维空间的实现问题,将Dirichlet自由变形算法应用到三维空间中的头像变形中,获得了较好的变形效果。
-
关键词:
- Delaunay三角划分 /
- 自由变形 /
- Sibson局部坐标 /
- Voronoi图
Abstract: Free Form Deformations (FFDs) have been extensively applied in computer animation and geometric modeling. FFD is an important branch of deformation methods which independent of object representation. Dirichlet Free-Form Deformation (DFFD) belongs to one of the FFDs. Comparing with other FFDs, it gives deformation more flexibility and has the ability to place control points arbitrarily. DFFD has been extensively applied in two-dimensional space, but seldom in three-dimensional space. This paper studies the application of DFFD in three-dimensional space. Good deformation results have been obtained by applying DFFD to 3D head-deformation.
计量
- 文章访问数: 4325
- HTML全文浏览量: 159
- PDF下载量: 104
- 被引次数: 0