一种基于广义算子理论上的神经反向传播
An Neural Back-propagation System Based on Generalized Operator Theory
-
摘要: 阐述了神经网络系统中的函数网络模型的基本原理。以M-P模型为基础,应用Hebb学习规则,提出了一种反向传播函数网络模型,由此推导出隐结点及结点输出的公式,并对其误差作出估计。该模型能将隐结点的非线性样本变成线性样本,使其成为(0-1)两类。最后以一实例对系统进行了测试。Abstract: This paper discusses the base principle of function network model on neural network system and proposes an back-propagation function network model base on M-P in application of Hebb learning rule. The formula of hide node and node output are derived, are the errors are estimated. The model can transform nonlinear hide node to linear of (O-1) set. Finally, an example testing system is given.