-
随着微电子技术朝着微型化、集成化方向发展,小封装尺寸、高芯片集成度等原因,使微电子器件工作时产生的热量不易向外散发。在实际应用中,当微电子器件处于工作状态时,产生的焦耳热会使微电子芯片单位面积上的热通量升高,逐渐形成过热点,特别是一些大功率器件,如氮化镓功率器件等,其工作时的热流密度能达到1 000 W/cm2以上[1]。通过有效的芯片热管理技术解决微电子器件热致失效问题变得尤为重要。自微流道散热器的概念提出后[2]一直受到学者们广泛的关注,在提高微流道散热性能与散热均匀性等方面做了大量研究[3-4]。如,在微流道底部加入针翅结构或者在侧面加入扰流结构扰乱流体边界层[5-8];增大流体与微流道的有效接触面积提高微流道散热器散热性能;此外,通过制备多孔微流道也是一种有效提高散热性能的方法[9-10]。
在对微流道散热器的性能进行评测时,尤其是对微流道内部温度分布、变化等进行监测时,需要通过集成在微流道内部的温度传感器实现。但是,目前常见且合适的工具或方法无法直接获取散热器内部的温度信息,这些用来测试散热器的温度传感器多位于散热器的进、出口处[11]和表面[12],而红外热成像方法只能监测到散热器表面的温度分布[13]。
本文通过激光刻蚀工艺,制备了一种内部集成有薄膜温度传感器的硅基微流道散热器,对优化微流道设计和提高散热器性能具有重要意义。
-
已知单位时间内带走的热量可以由牛顿散热定律描述:
$${Q_{{\rm{conv}}}} = hA({T_{\rm{S}}} - {T_\infty })$$ (1) 式中,
${Q_{{\rm{conv}}}}$ 是单位时间内带走的热量;h是冷却液与固体之间的对流传热系数;A是冷却液与固体之间的接触面积;${T_{\rm{S}}}$ 和${T_\infty }$ 分别是热源表面的温度和冷却液的入口温度。从式(1)中可以得知,增大对流传热系数或者增大冷却液与微流道的接触面积都可以有效地增大单位时间内带走的热量。通过牛顿冷却定律定义热阻来评估微流道散热器的散热性能,对式(1)进行变换,得到:$${Q_{{\rm{conv}}}} = \frac{{{T_{\rm{S}}} - {T_\infty }}}{{(1/h)A}} = \frac{{{T_{\rm{S}}} - {T_\infty }}}{{{R_{{\rm{conv}}}}}}$$ (2) 式中,
${R_{{\rm{conv}}}} = (1/h)A$ 即为热阻。文献[14-15]研究了微流道的入口效应,发现微流道的努塞尔数比微流道中后位置的努塞尔数大,努塞尔数的整体计算分为入口处和中后部分,这样得到的努塞尔数更为准确。所以在设计微流道时,可以根据实际情况结合入口效应来确定流道的长度。
-
图1a是微流道散热器的整体结构示意图。图1b是微流道散热器的爆炸图,微流道散热器主要包括模拟热源、微流道硅片和集成有薄膜温度传感器的基片。模拟热源分布在微流道硅片的上表面,温度传感器分布在基片的上表面。其中,基片的尺寸为20 000 μm×20 000 μm,模拟热源的尺寸为4 000 μm×4 000 μm。微流道硅片尺寸为11 000 μm×10 000 μm。结合入口效应以及模拟热源的大小,每根流道的长度为5 000 μm,宽度和深度分别为100 μm和300 μm,一共25根流道。图1c为薄膜温度传感器在微流道内的分布示意图,9个小型薄膜温度传感器等间距分布在微流道内部,沿散热器入水口到散热器出水口,依次被命名为S-1、S-2、S-3、S-4、S-5、S-6、S-7、S-8、S-9。每个温度传感器之间的距离为500 μm,尺寸为40 μm×200 μm。而在散热器的出入水口正下方,分布两个尺寸较大(400 μm×500 μm)的薄膜温度传感器,分别命名为S-In和S-Out。
Study of Optimization Method on Silicon-Based Microchannel
-
摘要: 采用激光刻蚀工艺制备了硅基微流道散热器,通过半导体微细加工技术将薄膜温度传感器集成到微流道内部。通过实验测试了不同流量以及不同加热功率下,激光刻蚀微流道和深反应离子刻蚀微流道的散热能力。结果表明,微流道内壁的粗糙表面能降低热阻,在相同条件下比深反应离子刻蚀微流道小一半。集成在微流道散热器内部的薄膜温度传感器能准确、实时捕获微流道内的温度变化,真实地反映了微流道的温度分布特性,为优化微流道设计提供了新的技术途径。Abstract: The silicon microchannel in this paper is fabricated by laser process. The thin-film temperature sensors are integrated in the internal surface of microchannel by micro-machined technique. The heat dissipation performances of microchannel fabricated by laser process and deep reactive iron etching (DRIE) are experimentally tested respectively in different flow rates and heat fluxes. The experiment results represent that the rough internal surface of microchannel can effectively decrease the thermal resistance. Under the same condition, the thermal resistance can reduce by almost 50% when compared with the microchannel heat sink fabricated by DRIE. The temperature sensors integrated in microchannel can accurately capture temperature change in real time and reflect the temperature distribution in microchannel. It provides a new method to optimize the design of microchannel.
-
[1] GARIMELLA S V, PERSOONS T, WEIBEL J A, et al. Electronics thermal management in information and communications technologies: Challenges and future directions[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1191-1205. doi: 10.1109/TCPMT.2016.2603600 [2] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for visi[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367 [3] LU S, VAFAI K. A comparative analysis of innovative microchannel heat sinks for electronic cooling[J]. International Communications in Heat and Mass Transfer, 2016, 76(8): 271-284. [4] DRUMMOND K P, BACK D, SINANIS M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117(2): 319-330. [5] İZCI T, KOZ M, KOŞAR A. The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks[J]. Heat Transfer Engineering, 2015, 36(17): 1447-1457. doi: 10.1080/01457632.2015.1010921 [6] DEWAN A, SRIVASTAVA P. A review of heat transfer enhancement through flow disruption in a microchannel[J]. Journal of Thermal Science, 2015, 24(3): 203-214. doi: 10.1007/s11630-015-0775-1 [7] WONG K C, LEE J H. Investigation of thermal performance of microchannel heat sink with triangular ribs in the transverse microchambers[J]. International Communications in Heat and Mass Transfer, 2015, 65(7): 103-110. [8] XU J, SONG Y, ZHANG W, et al. Numerical simulations of interrupted and conventional microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2008, 51(25-26): 5906-5917. doi: 10.1016/j.ijheatmasstransfer.2008.05.003 [9] VENUGOPAL G, BALAJI C, VENKATESHAN S P. Experimental study of mixed convection heat transfer in a vertical duct filled with metallic porous structures[J]. International Journal of Thermal Sciences, 2010, 49(2): 340-348. doi: 10.1016/j.ijthermalsci.2009.07.018 [10] WAN Z M, LIU J, SU K L, et al. Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs[J]. Microelectronics Journal, 2011, 42(5): 632-637. doi: 10.1016/j.mejo.2011.03.009 [11] KOZŁOWSKA A, ŁAPKA P, SEREDYŃSKI M, et al. Experimental study and numerical modeling of micro-channel cooler with micro-pipes for high-power diode laser arrays[J]. Applied Thermal Engineering, 2015, 91(12): 279-287. [12] BOGOJEVIC D, SEFIANE K, DUURSMA G, et al. Bubble dynamics and flow boiling instabilities in microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 663-675. doi: 10.1016/j.ijheatmasstransfer.2012.11.038 [13] LIU Z, WANG Z, ZHANG C, et al. Flow resistance and heat transfer characteristics in micro-cylinders-group[J]. Heat and Mass Transfer, 2013, 49(5): 733-744. doi: 10.1007/s00231-013-1115-1 [14] SRIDHAR A, VINCENZI A, RUGGIERO M, et al. Compact transient thermal model for 3D ICs with liquid cooling via enhanced heat transfer cavity geometries[C]// 2010 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). [S.l.]: IEEE, 2010: 1-6. [15] QIAN Han-hua, LIANG Hao, CHANG C H, et al. Thermal simulator of 3D-IC with modeling of anisotropic TSV conductance and microchannel entrance effects[C]// IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC). [S.l.]: IEEE, 2013: 485-490.