-
自FDA概念提出以来[1],国内外学者对FDA的阵列结构特性[2-4]、频控函数设计[5-6]及FDA与MIMO雷达[7-8]、认知雷达[9]的结合都有着广泛的研究。此外,也有基于FDA发射干扰机结构,分析FDA对无源雷达干涉仪测向系统、比幅法单脉冲测向系统以及测向时差组合定位系统欺骗效果的研究。文献[10-13]对近几年国内外学者的FDA研究现状有系统性的概括。但是,现有的文献大多基于阵元发射窄带条件下简单脉冲的假设,较少有对于脉冲压缩雷达信号FDA特性的研究。基于模糊函数的优化是雷达波形设计的重要手段[14-15],而雷达发射波形设计是FDA方向图优化及电抗特研究的重要基础。因此,本文重点对FDA雷达的负型模糊函数展开系统的推导分析。
-
设载波频率为
${f_0}$ ,阵元$n$ 的辐射信号频率为:$${f_n} = {f_0} + n\Delta f\begin{array}{*{20}{c}} {}&{} \end{array}n = 0,1,2, \cdots ,N - 1$$ (1) 设阵元
$n$ 的发射信号为:$${s_n}\left( t \right) = \sqrt N w_n^*u{\rm{(}}t{\rm{)}}{{\rm{e}}^{{\rm{j}}2{{\text π}}{f_n}t}}\begin{array}{*{20}{c}} {}&{} \end{array}\quad n = 0,1,2, \cdots ,N - 1$$ (2) 式中,
$N$ 为阵元总数;$w_n^*$ 为发射端信号加权的共轭;$u{\rm{(}}t{\rm{)}}$ 为发射端雷达波形。发射信号经加权之后到达远场目标$\left( {{R_0},{\theta _0}} \right)$ 的表达式为:$${s_t}\left( t \right) = \sqrt N \sum\limits_{n = 0}^{N - 1} {u\left( {t - \frac{R}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}{f_n}\left[ {t - \frac{{\left( {R - {R_{{{0}}}}} \right) - nd\left( {\sin \theta - \sin {\theta {_0}}} \right)}}{c}} \right]}}} $$ (3) 式中,
${r_n} = R - nd\sin \theta $ ;R为参考阵元到目标点的距离;$d$ 为阵元间距;$c$ 表示光速。发射信号经目标
$\left( {{R_0},{\theta _0}} \right)$ 二次反射后被接收阵列阵元$m$ 接收的信号形式为:$$ \begin{split} & y(t,\xi ) ={s_t}\left( {t - \frac{{{r_m}}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}{f_d}\left( {t - \frac{{{r_m}}}{c}} \right)}} \approx \\ & \sqrt N {{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R}}{c}}}\sum\limits_{n = 0}^{N - 1} u\left( {t - \frac{{R + {r_m}}}{c}} \right)\times\\ & {\rm{e}}^{{\rm{j}}2{{\text π}}{f_n}\left[ {t - \frac{{{r_m}}}{c} - \frac{{R - {R_0}}}{c} + \frac{{nd\left( {\sin \theta - \sin {\theta _0}} \right)}}{c}} \right]}{{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}} \approx \\ & \sqrt N {{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R}}{c}}}\sum\limits_{n = 0}^{N - 1} u\left( {t - \frac{{2R}}{c}} \right)\times\\ &{\rm{e}}^{{\rm{j}}2{{\text π}}{f_n} \left[ {t - \frac{{2R - {R_0}}}{c} + \frac{{nd\left( {\sin \theta - \sin {\theta _0}} \right) + md\sin \theta }}{c}} \right]} {{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}} \end{split} $$ (4) 其中,阵元
$m$ 接收的回波信号包含着发射阵列中所有阵元辐射的回波能量。通过在接收阵元之后接入不同的滤波器,可以将FDA雷达接收信号的处理分为带限相干处理、全波段相干处理以及全波段伪相干处理3种发射−接收机结构[8]。带限相干处理接收端的复合信号经解调后可得接收端阵元
$m$ 的信号为[16]:$$\begin{split} &{y_{1m}}(t,\xi ,{\theta _0},{R_0}) = \sqrt N u\left( {t - \frac{{2R}}{c}} \right){{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R + 2{f_0}\left( {R - {R_0}} \right)}}{c}}} \times \\ &\quad {{\rm{e}}^{{{\rm{ - j}}2{\text π}}\Delta {f_m}\frac{{2\left( {R - {R_0}} \right)}}{c}}}{{\rm{e}}^{{{\rm{j}}2{\text π}}\xi t}}{{\rm{e}}^{{{\rm{j}}2{\text π}}{f_0}\frac{{2md\left( {\sin \theta - \sin {\theta _0}} \right)}}{c}} } \end{split} $$ (5) 全波段相干处理接收端的复合信号经解调后可得接收端阵元
$m$ 的接收信号为[16]:$$\begin{split} & {y_{2m}}(t,\xi ,{\theta _0},{R_0}) =\sqrt N u\left(\!\! {t - \frac{{2R}}{c}} \right){{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R + 2{f_0}\left( {R - {R_0}} \right)}}{c}}}{{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}} \times \!\!\! \\ & \sum\limits_{n = 0}^{N - 1} {{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\frac{{2\left( {R - {R_0}} \right)}}{c}}} {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{nd\left( {\sin \theta - \sin {\theta _0}} \right) + md\left( {\sin \theta - \sin {\theta _0}} \right)}}{c}}}\!\!\! \end{split} $$ (6) -
模糊函数是时间−频率复合的二维自相关函数,一定程度上体现了雷达波形以及所运用的匹配滤波器的相关特性,是分析FDA阵列雷达距离和多普勒分辨力、旁瓣性能、方向图距离−角度耦合特性和噪声抑制性能的重要参数。模糊函数根据定义的不同可分为直观模糊函数与负型模糊函数。基于差平方积分原则,从分辨两个延迟差为
$\tau $ 、频移差为$\xi $ 的目标距离−速度二维分辨力出发,可得直观模糊函数[17-18]:$$\chi (\tau ,\xi ) = \int_{ - \infty }^\infty {u\left( t \right){u^ * }\left( {t + \tau } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}}} {\rm{d}}t$$ (7) 其频域表示为:
$$\chi (\tau ,\xi ) = \int_{ - \infty }^\infty {U\left( f \right){U^ * }\left( {f - \xi } \right){{\rm{e}}^{{\rm{ - j}}2{{\text π}}f\tau }}} {\rm{d}}f$$ (8) 当信号具有多普勒频移时,其复包络为
$u\left( t \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}}$ ,此时信号经匹配滤波器输出的时域卷积即为负型模糊函数:$$\chi (\tau ,\xi ) = \int_{ - \infty }^\infty {u\left( t \right){u^ * }\left( {t - \tau } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\xi t}}} {\rm{d}}t$$ (9) 其频域表示为:
$$\chi (\tau ,\xi ) = \int_{ - \infty }^\infty {U\left( f \right){U^ * }\left( {f - \xi } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}f\tau }}} {\rm{d}}f$$ (10) 1)带限相干处理FDA雷达模糊函数
取
$\vartheta = \sin \theta $ ,根据式(5),经带限相干处理的$M$ 个信号分别经过匹配滤波器输出后叠加可得:$$\begin{split} & \sum\limits_{m = 0}^{M - 1} {\int_{ - \infty }^\infty {{y_{1m}}(t,\xi ,R,\vartheta )} } y_{_{1m}}^ * (t',\xi ',R',\vartheta '){\rm{d}}t = \\ & N{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R + 2{f_0}\left( {R - {R_0}} \right)}}{c}}}\sum\limits_{m = 0}^{M - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_m}\frac{{2\left( {R - R'} \right)}}{c}}}} {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{2md\left( {\vartheta - \vartheta '} \right)}}{c}}} \times \\ & \qquad \int_{ - \infty }^\infty {u\left( {t - \frac{{2R}}{c}} \right)} {u^ * }\left( {t - \frac{{2R'}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\left( {\xi - \xi '} \right)t}}{\rm{d}}t \end{split} $$ (11) 则经带限相干处理的FDA雷达模糊函数定义如下:
$$ \begin{split} & {\chi _1}\!\left( {\xi ,R,\vartheta ,\xi ',R',{{\vartheta '}_s}} \!\right)\! =\!\!\! \sum\limits_{m = 0}^{M - 1} \!\!{{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_m}\frac{{2\left( {R - R'}\! \right)}}{c}}}} {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{2md\left( {\vartheta - \vartheta '} \!\right)}}{c}}} \times \!\!\!\!\\ &\quad\quad\quad \int_{ - \infty }^\infty {u\left( {t - \frac{{2R}}{c}} \right)} {u^ * }\left( {t - \frac{{2R'}}{c}} \right) {{\rm{e}}^{{\rm{j}}2{{\text π}}\left( {\xi - \xi '} \right)t}}{\rm{d}}t' = \\ & \quad\quad\quad \sum\limits_{m = 0}^{M - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_m}\frac{{2\Delta R}}{c}}}} {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{2md\Delta \vartheta }}{c}}} \times \\ &\quad\quad\quad \int_{ - \infty }^\infty {u\left( {t'} \right)} {u^ * }\left( {t' + \frac{{2\Delta R}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta \xi \left( {t' + \frac{{2R}}{c}} \right)}}{\rm{d}}t' \end{split} $$ (12) 式中,取
$t' = t - \dfrac{{2R}}{c}$ ,$\Delta \xi = \xi - \xi '$ ,$\Delta R = R - R'$ ,$\Delta \vartheta = \vartheta - \vartheta '$ 。式(12)是关于多普勒频移失配$\Delta \xi $ 和时延的函数,取时延失配$\Delta \tau = \dfrac{{2\Delta R}}{c}$ ,则经带限相干处理的FDA雷达模糊函数表示如下:$$ \begin{split} & {\chi_{\rm_{FDA}}}\left( {\Delta \tau ,\Delta \xi ,\Delta \vartheta } \right) = \\ & \quad \sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\Delta \tau }}{{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{\left( {n + m} \right)d\Delta \vartheta }}{c}}}} } \times \\ & \quad \int_{ - \infty }^\infty {u\left( t \right)} {u^ * }\left( {t + \Delta \tau } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta \xi t}}{\rm{d}}t \\ \end{split} $$ (13) 2) FDA-MIMO雷达模糊函数
根据式(6),经全波段相干处理的M组复合信号分别经过匹配滤波器的输出后叠加可得:
$$\begin{split} & \sum\limits_{m = 0}^{M - 1} {\int_{ - \infty }^\infty {{y_{2m}}(t,\xi ,R,\vartheta )} } y_{2m}^ * (t',\xi ',R',\vartheta '){\rm{d}}t = \\ & \quad N{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\frac{{\xi R + 2{f_0}\left( {R - {R_0}} \right)}}{c}}}\sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta {f_n}\frac{{2\left( {R - R'} \right)}}{c}}}} {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{nd\left( {\vartheta - \vartheta '} \right)}}{c}}} \times } \\ & \quad {{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{md\left( {\vartheta - \vartheta '} \right)}}{c}}} \times \int_{ - \infty }^\infty {u\left( {t - \frac{{2R}}{c}} \right)} {u^ * }\left( {t - \frac{{2R'}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\left( {\xi - \xi '} \right)t}}{\rm{d}}t \end{split} $$ (14) 则经全波段相干处理的FDA雷达亦即FDA-MIMO雷达的模糊函数定义如下:
$$\begin{split} & {\chi _2}\left( {\xi ,R,\vartheta ,\xi ',R',{{\vartheta '}_s}} \right) = \\ & \quad \sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\frac{{2\left( {R - R'} \right)}}{c}}}{{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{nd\left( {\vartheta - \vartheta '} \right) + md\left( {\vartheta - \vartheta '} \right)}}{c}}}} } \times \\ & \quad \int_{ - \infty }^\infty {u\left( {t - \frac{{2R}}{c}} \right)} {u^ * }\left( {t - \frac{{2R'}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\left( {\xi - \xi '} \right)t}}{\rm{d}}t' = \\ & \quad \sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\frac{{2\Delta R}}{c}}}{{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{\left( {n + m} \right)d\Delta \vartheta }}{c}}}} } \times \\ & \quad \int_{ - \infty }^\infty {u\left( {t'} \right)} {u^*}\left( {t' + \frac{{2\Delta R}}{c}} \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta \xi \left( {t' + \frac{{2R}}{c}} \right)}}{\rm{d}}t' \end{split} $$ (15) 经过类似化简,最终得FDA-MIMO雷达模糊函数表示如下:
$$ \begin{split} & {\chi _{{\rm{FDA}} - {\rm{MIMO}}}}\left( {\Delta \tau ,\Delta \xi ,\Delta \vartheta } \right) = \\ & \quad \sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\Delta \tau }}{{\rm{e}}^{{\rm{j}}2{{\text π}}{f_0}\frac{{\left( {n + m} \right)d\Delta \vartheta }}{c}}}} } \times \\ & \quad \int_{ - \infty }^\infty {u\left( t \right)} {u^ * }\left( {t + \Delta \tau } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta \xi t}}{\rm{d}}t \end{split} $$ (16) 定义式(16)中阵元发射波形的模糊函数为:
$${\chi _{uu}}\left( {\Delta \tau ,\Delta \xi } \right) = \int_{ - \infty }^\infty {u\left( t \right)} {u^ * }\left( {t + \Delta \tau } \right){{\rm{e}}^{{\rm{j}}2{{\text π}}\Delta \xi t}}{\rm{d}}t$$ (17) -
基于式(16),给出4种典型信号的FDA-MIMO负型模糊函数如下:
1) 简单矩形脉冲信号
对包络为矩形的固定载频信号,取脉冲幅度为
$1/\sqrt {{T_p}} $ ,${T_p}$ 为脉冲宽度。有:$${u_1}\left( t \right) = \left\{ \begin{split} & \frac{1}{{\sqrt {{T_p}} }}\qquad t \in \left[ {0,{T_p}} \right]\\ & 0\qquad\quad\; {\text{其他}} \end{split} \right.$$ (18) 令式(16)中
$\Delta \vartheta = 0$ ,则阵元发射矩形脉冲的FDA负型模糊函数为:$$ \begin{split} & \left| {{\chi _1}\left( {\xi ,\tau } \right)} \right| =\\ & {\left\{ {\begin{aligned} & {\sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\tau }}} \frac{{\sin {\text π} \xi \left( {{T_p} - \left| \tau \right|} \right)}}{{{\text π} \xi \left( {{T_p} - \left| \tau \right|} \right)}}\frac{{{T_p} - \left| \tau \right|}}{{{T_p}}}}}\quad{\left| \tau \right| \leqslant {T_p}}\\ & {0}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\;\;\;\qquad{\left| \tau \right| > {T_p}} \end{aligned}} \right.} \end{split} $$ (19) 2) 正调频LFM信号
取正调频LFM信号表示如下:
$${u_2}\left( t \right) = \left\{ {\begin{split} & {\frac{1}{{\sqrt {{T_p}} }}{{\rm e}^{ - {\rm{j}}\mu {t^2}}}}\qquad{t \in \left[ {0,{T_p}} \right]}\\ & {0}\qquad\qquad\quad\;\,{{\text{其他}}} \end{split}} \right.$$ (20) 令式(16)中
$\Delta \vartheta = 0$ ,则正调频LFM信号的负型模糊函数为:$$ \begin{split} & \left| {{\chi _2}\left( {\xi ,\tau } \right)} \right| =\\ & \left\{ {\begin{aligned} & {\sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\tau }}} \frac{{\sin {\text π} {T_p}\left( {\mu \left| \tau \right| + \xi } \right)}}{{{\text π} {T_p}\left( {\mu \left| \tau \right| + \xi } \right)}}\frac{{{T_p} - \left| \tau \right|}}{{{T_p}}}}}\quad{\left| \tau \right| \leqslant {T_p}}\\ & {0}\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad\qquad{\left| \tau \right| > {T_p}} \end{aligned}} \right. \end{split} $$ (21) 3) 相干脉冲串信号
归一化的相干脉冲串信号可表示为[20]:
$${u_3}\left( t \right) = \frac{1}{{\sqrt K }}\sum\limits_{k = 0}^{K - 1} {{u_1}\left( {t - k{T_r}} \right)} $$ (22) 式中,K为脉冲串中的脉冲数;
${T_r}$ 为脉冲重复周期;${u_1}\left( t \right)$ 为式(18)所示的单个矩形脉冲。令式(16)中$\Delta \vartheta = 0$ ,则相干脉冲串信号的FDA负型模糊函数为:$$\left| {{\chi _3}\left( {\xi ,\tau } \right)} \right| = \left\{ {\begin{aligned} & {\sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\tau }}} \sum\limits_{q = - \left( {K - 1} \right)}^{K - 1} {\frac{{{{\rm e}^{{\rm j}2{\text π} \xi \left( {K - 1 + q} \right){T_r}}}{{\rm e}^{{\rm j}2{\text π} \xi \left( {\tau - q{T_r}} \right)}}}}{{K{T_p}}}\frac{{\sin {\text π} \xi \left( {{T_p} - \left| {\tau - q{T_r}} \right|} \right)}}{{{\text π} \xi }}} \frac{{\sin {\text π} \xi \left( {K - \left| q \right|{T_r}} \right)}}{{{\text π} \xi {T_r}}}} }\qquad{\left| \tau \right| \leqslant {T_p}}\\ & {0}\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\left| \tau \right| > {T_p}} \end{aligned}} \right.$$ (23) 4) 相位编码信号
$L$ 个脉宽为${\tau _c}$ 的连续子脉冲组成的相位编码波形为:$$\begin{split} & x\left( t \right) = \sum\limits_{l = 0}^{L - 1} {{x_l}\left( {t - l{\tau _c}} \right)} \\ &{x_l}\left( t \right) = \left\{ {\begin{array}{*{20}{l}} {\exp \left( {{\rm{j}}{\phi _l}} \right)}&{t \in \left[ {0,{\tau _c}} \right]}\\ {0}&{{\text{其他}}} \end{array}} \right. \end{split}$$ (24) 以
$\left\{ {{A_l}} \right\} = \left\{ {\exp \left( {{\rm{j}}{\phi _l}} \right)} \right\}$ 表示${x_l}\left( t \right)$ 的复幅度序列,令$t = p{\tau _c} + \eta ,\;\;\eta \in \left[ {\left. {0,{\tau _c}} \right)} \right.$ ,利用文献[19]的结论,可得相位编码信号的模糊函数为:$$ \begin{split} & \left| {{\chi _4}\left( {\xi ,\tau } \right)} \right| = \\ & \left\{ {\begin{aligned} & {\sum\limits_{m = 0}^{M - 1} {\sum\limits_{n = 0}^{N - 1} {{{\rm{e}}^{{\rm{ - j}}2{{\text π}}\Delta {f_n}\tau }}} \left( {1 - \frac{\eta }{{{\tau _c}}}} \right){s_A}\left[ p \right] + \frac{\eta }{{{\tau _c}}}{s_A}\left[ {p + 1} \right]}}\quad{\left| t \right| \leqslant {\tau _c} }\\ & {0}\qquad\;\;\;\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\left| t \right| \leqslant {\tau _c}} \end{aligned}} \right. \end{split} $$ (25)
Research on FDA Characteristics of Pulse Compression Radar Signal
-
摘要: 考虑到现有关于频率分集阵列(FDA)的文献中大多只基于窄带条件下的简单脉冲假设,较少有对其他脉冲压缩信号的分析。该文在建立FDA数据模型的基础上,推导了FDA收发共型线阵不同接收信号处理机制对应的负型模糊函数。之后,在全波段相干处理FDA雷达结构的基础上对矩形脉冲、线性调频(LFM)、相干脉冲串以及相位编码信号的模糊函数特性分别展开仿真分析。验证了上述几种典型的脉冲压缩雷达信号对该结构的适应性,为后续基于模糊函数优化的FDA雷达发射波形设计及电抗特性研究奠定了基础。Abstract: The research of frequency diverse array (FDA) in existing literature is mostly based on the hypothesis of simple pulse under narrowband conditions, but less on other pulse compression signals. Therefore, based on the establishment of the FDA array data model, this paper systematically derives the negative ambiguity function and its characteristics under the FDA-MIMO transmit/receive model. Then, based on the full-band coherent processing of the FDA radar architecture, the ambiguity function characteristics of rectangular pulses, linear frequency modulate (LFM), coherent pulse trains, and phase-encoded signals are simulated and analyzed. The adaptability of the above-mentioned typical pulse compression radar signals to the architecture is verified, which lays an important foundation for the follow-up FDA radar transmission waveform design and reactance characteristics optimization based on ambiguity function optimization.
-
[1] ANTONIK P, WICKS W C, GRIFFITHS H D, et al. Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference. Verona, New York, USA: IEEE, 2006: 470-475. [2] XU Y, SHI X, XU J, et al. Range-angle-decoupled beampattern synthesis with subarray-based frequency diverse array[J]. Digital Signal Processing, 2017, 64: 49-59. doi: 10.1016/j.dsp.2017.02.005 [3] HIGGINS T, BLUNT S D. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]//Proceedings of International Waveform Diversity and Design Conference. Kissimmee, Florida, USA: IEEE, 2009: 1-4. [4] JONES A M. Frequency diverse array receiver architectures[D]. Dayton, OH, USA: Wright State University, 2011. [5] BASIT A, QURESHI I, KHAN W, et al. Beam Pattern synthesis for an FDA radar with hamming window based non-uniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2283-2286. doi: 10.1109/LAWP.2017.2714761 [6] 王博, 谢军伟, 张晶, 等. 基于非线性频偏的频控阵波束控制研究[J]. 北京理工大学学报, 2019, 39(3):311-319. WANG Bo, XIE Jun-wei, ZHANG Jing, et al. Study of frequency diverse array beam control based on nonlinear frequency offset[J]. Transactions of Beijing Institute of Technology, 2019, 39(3): 311-319. [7] XU J W, LIAO G S, ZHU S Q, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9-17. doi: 10.1016/j.sigpro.2015.01.014 [8] PIER F S, CHRISTOPHER J B, HUGH D G. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222. doi: 10.1109/TAES.2013.6404099 [9] CHEN Xiao-long, CHEN Bao-xin, HUANG Yong, et al. Frequency diverse array radar signal processing via space-range-Doppler focus (SRDF) method[J]. Journal of Radars, 2018, 7(2): 183-193. [10] WANG W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001-1012. [11] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2):153-166. WANG Wen-qin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153-166. [12] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2):167-182. XU Jing-wei, ZHU Sheng-qi, LIAO Gui-sheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167-182. [13] 陈小龙, 陈宝欣, 黄勇, 等. 频控阵雷达空距频聚焦信号处理方法[J]. 雷达学报, 2018, 7(2):183-193. CHEN Xiao-long, CHEN Bao-xin, HUANG Yong, et al. Frequency diverse array radar signal processing via Space-Range-Doppler Focus (SRDF) method[J]. Journal of Radars, 2018, 7(2): 183-193. [14] WANG W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 359-369. [15] WANG Y B, WANG W Q, CHEN H. Linear frequency diverse array manifold geometry and ambiguity analysis[J]. IEEE Sensors Journal, 2015, 15(2): 984-993. doi: 10.1109/JSEN.2014.2359074 [16] WANG W Q, DAI M M, ZHENG Z. FDA radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 3(54): 1368-1380. [17] 王博, 谢军伟, 张晶, 等. 子阵结构FDA阵列模糊函数建模与研究[J]. 空军工程大学学报(自然科学版), 2019, 20(4):90-96. WANG Bo, XIE Jun-wei, ZHANG Jing, et al. Modeling and research of ambiguity function based on subarray-based FDA[J]. Journal of Air Force Engineering University(Natural Science Edition), 2019, 20(4): 90-96. [18] RICHARDS M. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2008. RICHARDS M. Fundamentals of radar signal processing[M]. Beijing: Publishing House of Electronics Industry, 2008. [19] 丁璐飞, 耿富录, 陈建春. 雷达原理[M]. 北京: 电子工业出版社, 2010. DING Lu-fei, GENG Fu-lu, CHEN Jian-chun. Radar principle[M]. Beijing: Publishing House of Electronics Industry, 2010. [20] LEVANON N, MOZESON E. Radar signals[M]. New York, USA: IEEE, 2004.