留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoSb3基方钴矿热电材料综述

王超 张蕊 姜晶 牛夷 杨铖铖 周婷 潘燕

王超, 张蕊, 姜晶, 牛夷, 杨铖铖, 周婷, 潘燕. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
引用本文: 王超, 张蕊, 姜晶, 牛夷, 杨铖铖, 周婷, 潘燕. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
WANG Chao, ZHANG Rui, JIANG Jing, NIU Yi, YANG Cheng-cheng, ZHOU Ting, PAN Yan. CoSb3 Based Skutterudites Thermoelectric Materials[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
Citation: WANG Chao, ZHANG Rui, JIANG Jing, NIU Yi, YANG Cheng-cheng, ZHOU Ting, PAN Yan. CoSb3 Based Skutterudites Thermoelectric Materials[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124

CoSb3基方钴矿热电材料综述

doi: 10.12178/1001-0548.2019124
基金项目: 国家自然科学基金(51672037, 61727818);四川省国际科技合作与交流研发项目 (2019YFH0009);国家重点研发计划(2017YFC0602102)
详细信息
    作者简介:

    王超(1978-),男,博士,教授,主要从事热电材料及器件方面的研究. E-mail:cwang@uestc.edu.cn

  • 中图分类号: TN3

CoSb3 Based Skutterudites Thermoelectric Materials

  • 摘要: 热电材料是一种能够实现电能和热能相互转化的新型清洁能源材料。方钴矿热电材料利用其独特的笼状结构能大幅降低热导率,是中温段性能最好的热电材料之一。该文回顾了方钴矿化合物的热电性能,对方钴矿化合物热电性能的主要改善途径做了一些归纳总结,包括替位方钴矿、填充方钴矿、纳米结构方钴矿等。下一步的研究方向是扩展到热电器件的商业应用中。
  • 图  1  N型和P型热电材料的zT值随温度的变化趋势[8]

    图  2  方钴矿化合物的晶体结构[8, 26]

    图  3  CoSb3方钴矿化合物的电子结构

    图  4  电负性元素周期表

    表  1  CoSb3基方钴矿室温下的物理性能参数

    性能参数
    晶格常数/A9.0345
    德拜温度/K307
    热膨胀系数/10−6K6.36
    格林艾森常数0.952
    电阻率/mΩ·cm1.894
    霍尔迁移率/cm2·V−1·s−12835
    霍尔载流子浓度/1019cm−30.116
    塞贝克系数/μV·K−1220
    晶格热导率/W·m−1·K−110
    能带宽度/eV0.55
    下载: 导出CSV
  • [1] WISE M, CALVIN K, THOMSON A, et al. Implications of limiting CO2 concentrations for land use and energy[J]. Science, 2009, 324(5931): 1183-1186. doi:  10.1126/science.1168475
    [2] ZHENG L T, WEN L, SUN C, et al. Ternary thermoelectric AB2C2 Zintls[J]. Journal of Alloys and Compounds, 2020, 821: 153497. doi:  10.1016/j.jallcom.2019.153497
    [3] QIU P F, SHI X, CHEN L D. Cu-based thermoelectric materials[J]. Energy Storage Materials, 2016, 3: 85-97. doi:  10.1016/j.ensm.2016.01.009
    [4] SHIOTA Y, OHISHI Y, MATSUDA M, et al. Improvement of thermoelectric property in Ce filled Fe3Co1Sb12 by Sn addition[J]. Journal of Alloys and Compounds, 2020, DOI:  10.1016/j.jallcom.2020.154478.
    [5] BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials ence and Engineering R Reports, 2018, DOI:  10.1016/j.mser.2018.09.001.
    [6] QIN D D, CUI B, YIN L, et al. Tin acceptor doping enhanced thermoelectric performance of n-type Yb single-filled skutterudites via reduced electronicthermal conductivity[J]. ACS Appl Mater Interfaces, 2019, 11: 25133-25139. doi:  10.1021/acsami.9b05243
    [7] RO G L, G, GRYTSIV A, ANBALAGAN R, et al. Direct SPD processing to achieve high-zT skutterudites[J]. Acta Mater, 2018, 159: 352-363. doi:  10.1016/j.actamat.2018.08.020
    [8] RULLBRAVO M, MOURE A, FERNANDEZ J F, et al. Skutterudites as thermoelectric materials: Revisited[J]. Rsc Advances, 2015, 5(52): 41653-41667. doi:  10.1039/C5RA03942H
    [9] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angew Chem Int Edit, 2009, 48(46): 8616-8639. doi:  10.1002/anie.200900598
    [10] ISLAM S M K N, LI M, AYDEMIR U, et al. Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu2Se[J]. Journal of Materials Chemistry A, 2018, 6(38): 18409-18416. doi:  10.1039/C8TA05455J
    [11] POWELL A V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials[J]. Journal of Applied Physics, 2019, DOI:  10.1063/1.5119345.
    [12] ZHANG J W, WU Z W, XIANG B, et al. Ultralow lattice thermal conductivity in SnTe by incorporating with InSb[J]. ACS Applied Materials & Interfaces, 2020, DOI:  10.1021/acsami.0c03315.
    [13] ZHOU Z F, CHAI Y W, IKUTA Y, et al. Reduced thermal conductivity of Mg2(Si, Sn) solid solutions by a gradient composition layered microstructure[J]. ACS Applied Materials & Interfaces, 2020, DOI:  10.1021/acsami.0c02549.
    [14] HONG M, CHEN Z G, YANG L, et al. Achieving zT > 2 in p-Type AgSbTe2−xSex Alloys via exploring the extra light valence band and introducing dense stacking faults[J]. Advanced Energy Materials, 2018, 8(9): 1702333. doi:  10.1002/aenm.201702333
    [15] OLVERA A A, MOROZ N A, SAHOO P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J]. Energy & Environmental Science, 2017, 10(7): 1668-1676.
    [16] SHUAI J, SUN Y, TAN X J, et al. Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high-performance GeTe thermoelectric material[J]. Small, 2020, DOI:  10.1002/smll.201906921.
    [17] HONG M, WANG Y, FENG T L, et al. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment[J]. Journal of the American Chemical Society, 2019, 141(4): 1742-1748. doi:  10.1021/jacs.8b12624
    [18] ROWE D M. Thermoelectrics handbook[J]. Thermoelectrics Handbook Macro to Nano, 2005, DOI:  10.1201/9781420038903.
    [19] HOLLOWAY J M, NORDSTROM D K, BOHLKE J K, et al. Ammonium in thermal waters of yellowstone national park: processes affecting speciation and isotope fractionation[J]. Geochimica Et Cosmochimica Acta, 2011, 75(16): 4611-4636. doi:  10.1016/j.gca.2011.05.036
    [20] KAUR P, MADSEN G K H, BERA C. Thermoelectric figure of merit and thermal conductivity of type-I clathrate alloy nanowires[J]. Mrs Communications, 2019, 9(1): 70-374.
    [21] QIN D D, WU H J, CAI S T, et al. Enhanced thermoelectric and mechanical properties in Yb0.3Co4Sb12 with In situ formed CoSi nanoprecipitates[J]. Advanced Energy Materials, 2019, 9(42),
    [22] PASCHEN S, CARRILLO-CABRERA W, BENTIEN A, et al. Structural, transport, magnetic and thermal properties of Eu8Ga16Ge30[J]. Phys Rev B, 2001, 64(21): 214404. doi:  10.1103/PhysRevB.64.214404
    [23] SINGH D J. Theoretical and computational approaches for identifying and optimizing novel thermoelectric materials[J]. Recent Trends Thermoelectr Mater Res, 2001, 70: 125-177. doi:  10.1016/S0080-8784(01)80139-3
    [24] SALES B C, MANDRUS D, WILLIAMS R K. Filled skutterudite antimonides: A new class of thermoelectric materials[J]. Science, 1996, 272: 1325-1328. doi:  10.1126/science.272.5266.1325
    [25] GHOSH S, VALIYAVEETTIL S M, SHANKAR G, et al. Enhanced thermoelectric properties of In-filled Co4Sb12 with InSb nanoinclusions[J]. Acs Applied Energy Materials, 2020, 3(1): 635-646. doi:  10.1021/acsaem.9b01851
    [26] ANNO H, MATSUBARA K, CAILLAT T, et al. Valence-band structure of the skutterudite compounds CoAs3, CoSb3 and RhSb3 studied by x-ray photoelectron spectroscopy[J]. Phys Rev B, 2000, 62(16): DOI: http:\\dx.doi.org/10.1103/physRevB.62.10737.
    [27] HERMANN R P, JIN R, SCHWEIKA W, et al. Einstein oscillators in thallium filled antimony skutterudites[J]. Physical Review Letters, 2003, 90(13): 135505. doi:  10.1103/PhysRevLett.90.135505
    [28] NOLAS G S, SLACK G A, MORELLI D T, et al. The effect of rare-earth filling on the lattice thermal conductivity of skutterudites[J]. Journal of Applied Physics, 1996, 79(8): 4002-4008. doi:  10.1063/1.361828
    [29] 席丽丽, 杨炯, 史迅, 等. 填充方钴矿热电材料: 从单填到多填[J]. 中国科学: 物理学 力学 天文学, 2011, 41: 706-728. doi:  10.1360/132011-242

    XI L L, YANG J, SHI X, et al. Filled skutterudites: From single to multiple filling[J]. Sci Sin Phys Mech Astron, 2011, 41: 706-728. doi:  10.1360/132011-242
    [30] CAILLAT T, BORSHCHEVSKY A, FLEURIAL J P. Properties of single crystalline semiconducting CoSb3[J]. Journal of Applied Physics, 1996, 80(8): 4442-4449. doi:  10.1063/1.363405
    [31] ALLENO E, ZEHANI E, GABORIT M, et al. Mesostructured thermoelectric Co1−yMySb3 (M = Ni, Pd) skutterudites[J]. Journal of Alloys and Compounds, 2017, 692: 676-686. doi:  10.1016/j.jallcom.2016.09.094
    [32] MI J L, ZHAO X B, ZHU T J, et al. Thermoelectric properties of skutterudites FexNiyCo1−xySb3(x=y)[J]. Journal of Alloys & Compounds, 2008, 452(2): 225-229.
    [33] KONG L J, JIA X P, SUN H R, et al. Influence of the high pressure and high temperature synthesis on thermoelectric properties of Ni-doped skutterudite[J]. Journal of Alloys and Compounds, 2017, 697: 257-261. doi:  10.1016/j.jallcom.2016.12.067
    [34] WAN S, QIU P F, HUANG X Y, et al. Synthesis and thermoelectric properties of charge-compensated SyPdxCo4−xSb12 skutterudites[J]. Acs Applied Materials & Interfaces, 2018, 10(1): 625-634.
    [35] ALLENO E, ZEHANI E, ROULEAU O. Metallurgical and thermoelectric properties in Co1−xPdxSb3 and Co1−xNixSb3 revisited[J]. Journal of Alloys & Compounds, 2013, 572(36): 43-48.
    [36] LEI Y, GAO W S, ZHENG R, et al. Ultrafast synthesis of Te-Doped CoSb3 with excellent thermoelectric properties[J]. Acs Applied Energy Materials, 2019, 2(6): 4477-4485. doi:  10.1021/acsaem.9b00720
    [37] ZHANG Q, LI X H, KANG Y L, et al. High pressure synthesis of Te-doped CoSb3 with enhanced thermoelectric performance[J]. Journal of Materials Science-Materials in Electronics, 2015, 26(1): 385-391. doi:  10.1007/s10854-014-2411-3
    [38] LIANG T, SU X L, YAN Y G, et al. Panoscopic approach for high-performance Te-Doped skutterudite[J]. NPG Asia Mater, 2017, 9(2),
    [39] SHAHEEN N, SHEN X, JAVED M S, et al. High-temperature thermoelectric properties of Ge-substituted p-type Nd-filled skutterudites[J]. Journal of Electronic Materials, 2017, DOI:  10.1007/s11664-016-5079-z.
    [40] MACKEY J, DYNYS F, HUDAK B M, et al. CoxNi4−xSb12−ySny skutterudites: Processing and thermoelectric properties[J]. Journal of Materials Science, 2016, 51(13): 6117-6132. doi:  10.1007/s10853-016-9868-9
    [41] FU L, JIANG Q, YANG J, et al. Enhancement of thermoelectric properties of Ce0.9Fe3.75Ni0.25Sb12 p-type skutterudite by tellurium addition[J]. Journal of Materials Chemistry A, 2016, DOI:  10.1039/C6TA06325J.
    [42] FU L, YANG J, JIANG Q, et al. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb rings induced by te doping and nanopores[J]. Journal of Electronic Materials, 2016, 45(3): 1240-1244. doi:  10.1007/s11664-015-3973-4
    [43] DIMITROV I K, MANLEY M E, SHAPIRO S M, et al. Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12[J]. Phys Rev B, 2010, 1(8): 2821-2829.
    [44] SU X, HAN L, YAN Y, et al. Microstructure and thermoelectric properties of CoSb2.75Ge0.25−xTex prepared by rapid solidification[J]. Acta Materialia, 2012, 60(8): 3536-3544. doi:  10.1016/j.actamat.2012.02.034
    [45] JIANG Y P, JIA X P, MA H G. The thermoelectric properties of CoSb3 compound doped with Te and Sn synthesized at different pressure[J]. Modern Physics Letters B, 2017, 31(28),
    [46] SUN H, JIA X, DENG L, et al. Impacts of both high pressure and Te–Se double-substituted skutterudite on the thermoelectric properties prepared by HTHP[J]. Journal of Alloys & Compounds, 2014, 615: 1056-1059.
    [47] DUAN B, ZHAI P, LIU L, et al. Effects of Se substitution on the thermoelectric performance of n-type Co4Sb11.3Te0.7−xSex skutterudites[J]. Materials Research Bulletin, 2012, 47(7): 1670-1673.
    [48] BO D, ZHAI P, XU C, et al. Thermoelectric performance of tellurium and sulfur double-substituted skutterudite materials[J]. Journal of Materials Science, 2014, 49(13): 4445-4452.
    [49] MALLIK R C, ANBALAGAN R, ROGL G, et al. Thermoelectric properties of Fe0.2Co3.8Sb12−xTex, skutterudites[J]. Acta Materialia, 2013, 61(18): 6698-6711.
    [50] XU C, DUAN B, DING S, et al. Thermoelectric properties of skutterudites Co4−xNixSb11.9−yTeySe0.1[J]. Journal of Electronic Materials, 2014, 43(6): 2224-2228.
    [51] BOUHAFS C, CHITROUB M, SCHERRER H. Synthesis and thermoelectric characterizations of Pd and Se-doped skutterudite compound[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(2): 1264-1268.
    [52] IOANNIDOU A A, RULL M, MARTIN-GONZALEZ M, et al. Microwave synthesis and characterization of the series Co1−xFexSb3 high temperature thermoelectric materials[J]. Journal of Electronic Materials, 2014, 43(7): 2637-2643.
    [53] LIU Y, LI X, ZHANG Q, et al. High pressure synthesis of p-type Fe-substituted CoSb3 skutterudites[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6433-6437.
    [54] JEITSCHKOW, FOECKER A J, PASCHKE D, et al. Crystal structure and properties of some filled and unfilled skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3 and NiP3[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2015, 626(5): 1112-1120.
    [55] KEPPENS V, MANDRUS D, SALES B C, et al. Localized vibrational modes in metallic solids[J]. Nature, 1998, 395(6705): 876-878.
    [56] LI J,DUAN B, YANG H J, et al. Thermoelectric properties of electronegatively filled SyCo4−xNixSb12 skutterudites[J]. Journal of Materials Chemistry C, 2019, 90(26): 8079-8085.
    [57] LI W, MINGO N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes[J]. Phys Rev B, 2015, 91(14): 95-98.
    [58] SHI X, BAI S, XI L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites[J]. Journal of Materials Research, 2011, 26: 1745-1754.
    [59] CHEN L D. Recent advances in filled skutterudite systems[C]//International Conference on Thermoelectrics. [S.l.]: IEEE, 2002, DOI: 10.1109/ICT.2002.1190261.
    [60] SHI X, KONG H, LI C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites[J]. Applied Physics Letters, 2008, 92(18): 407-253.
    [61] YANG J, ZHANG W, BAI S Q, et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr)[J]. Applied Physics Letters, 2007, 90(19),
    [62] LU Q M, ZHANG J X, ZHANG X, et al. Effects of double filling of La and Ce on thermoelectric properties of CemLanFeCo3Sb12 compounds by spark plasma sintering[J]. Journal of Applied Physics, 2005, 98(10),
    [63] TIAN Y F, SIRUSI A A, BALLIKAYA S, et al. Charge-carrier behavior in Ba-, Sr- and Yb-filled CoSb3: NMR and transport studies[J]. Physical Review B, 2019,
    [64] QIU P, XUN S, QIU Y, et al. Enhancement of thermoelectric performance in slightly charge-compensated CeyCo4Sb12 skutterudites[J]. Applied Physics Letters, 2013, 103(6): 1745.
    [65] KIM J, OHISHI Y, MUTA H, et al. Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites[J]. Materials Transactions, 2019, 60(6): 1078-1082.
    [66] LI X H, KANG Y L, CHEN C, et al. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3[J]. AIP Advances, 2017,
    [67] SALVADOR J R, YANG J, WANG H, et al. Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and properties[J]. Journal of Applied Physics, 2010, DOI:  10.1063/1.3296186.
    [68] BAI S Q, HUANG X Y, CHEN L D, et al. Thermoelectric properties of n-type SrxMyCo4Sb12(M=Yb, Ba) double-filled skutterudites[J]. Applied Physics A: Materials Science & Processing, 2010, 100(4): 1109-1114.
    [69] ZHAO W, WEI P, ZHANG Q, et al. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler[J]. Journal of the American Chemical Society, 2009, 131(10): 3713-20. doi:  10.1021/ja8089334
    [70] NOVIKOV S V, BURKOV A T, TANG X, et al. Thermoelectric properties of melt-spun and crystalline In0.2Ce0.1Co4Sb12.3 ribbons[J]. Materials Today-Proceedings, 2019, 8: 713-717. doi:  10.1016/j.matpr.2019.02.072
    [71] BASHIR M B A, SABRI M F M, SAID S M, et al. Enhancement of thermoelectric properties of Co4Sb12 skutterudite by Al and La double filling[J]. Journal of Solid State Chemistry, 2020: 284. doi:  10.1016/j.jssc.2020.121205
    [72] GUO L, WANG G, PENG K, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics[J]. Scripta Materialia, 2016, 116: 26-30. doi:  10.1016/j.scriptamat.2016.01.035
    [73] JEON B J, SHIN D K, KIM I H. Synthesis and thermoelectric properties of La1−zYbzFe4−xNixSb12, skutterudites[J]. Journal of Electronic Materials, 2016, 44(3): 1-7.
    [74] SHIN D K, KIM I H, JANG K W, et al. Charge transport and thermoelectric properties of double-filled Nd1 –zYbzFe4 –xCoxSb12 skutterudites[J]. Journal of the Korean Physical Society, 2016, 68(7): 875-882. doi:  10.3938/jkps.68.875
    [75] SONG K M, SHIN D K, JANG K W, et al. Synthesis and thermoelectric properties of Ce1−zPrzFe4−xCoxSb12, skutterudites[J]. Journal of Electronic Materials, 2016, DOI:  10.3938/jkps.67.1597.
    [76] SONG K M, SHIN D K, KIM I H. Thermoelectric properties of p-Type La1−zPrzFe4−xCoxSb12, skutterudites[J]. Journal of Electronic Materials, 2016, 45(3): 1227-1233. doi:  10.1007/s11664-015-3952-9
    [77] JOO G S, SHIN D K, KIM I H. Synthesis and thermoelectric properties of p-type double-filled Ce1−zYbzFe4−xCoxSb12, skutterudites[J]. Journal of Electronic Materials, 2016, 45(3): 1251-1256. doi:  10.1007/s11664-015-3984-1
    [78] SHI X, YANG J J, SALVADOR J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2012, 134(5): 2842-2842. doi:  10.1021/ja211185w
    [79] ROGL G, GRYTSIV A, ROGL P, et al. n-Type skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT approximate to 2.0[J]. Acta Materialia, 2014, 63: 30-43. doi:  10.1016/j.actamat.2013.09.039
    [80] KUMAR M, RANI S J, SINGH Y, et al. Tuning the thermoelectric material's parameter: A comprehensive review[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3636-3646. doi:  10.1166/jnn.2020.17531
    [81] SANTOS R, YAMINI S A, DOU S X, et al. Recent progress in magnesium-based thermoelectric materials[J]. Journal of Materials Chemistry A, 2018, 6(8): 3328-3341. doi:  10.1039/C7TA10415D
    [82] KHAN A U, KOBAYASHI K, TANG D M, et al. Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity[J]. Nano Energy, 2017, 31: 152-159. doi:  10.1016/j.nanoen.2016.11.016
    [83] ZHENG ZH, WEI M, LI F, et al. Improvement of power factor of CoSb3 thermoelectric thin films via microstructure optimization[J]. Coatings, 2017, 7(11): 205. doi:  10.3390/coatings7110205
    [84] WU Z H, MU E, CHE Z X, et al. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance[J]. Journal of Alloys and Compounds, 2020, 828: 154239. doi:  10.1016/j.jallcom.2020.154239
    [85] LIANG G X, ZHENG Z H, LI F, et al. Nano structure Ti-doped skutterudite CoSb3 thin films through layer inter-diffusion for enhanced thermoelectric properties[J]. Journal of the European Ceramic Society, 2019, 39(5): 4842-4849.
    [86] ZHENG Z H, LI F, LI F, et al. Thermoelectric properties of co-sputtered CoSb3 thin films as a function of stoichiometry[J]. Thin Solid Films, 2017, 632: 88-92. doi:  10.1016/j.tsf.2017.04.044
    [87] ZHENG Z H, LI F, LUO J T, et al. Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering[J]. Journal of Alloys and Compounds, 2018, 732: 958-962. doi:  10.1016/j.jallcom.2017.10.207
    [88] DANIEL M V, HAMMERSCHMIDT L, SCHMIDT C, et al. Structural and thermoelectric properties of FeSb3 skutterudite thin films[J]. Physical Review B, 2015, 91(8),
    [89] DANIEL M V, LINDORF M, ALBRECHT M. Thermoelectric properties of skutterudite CoSb3 thin films[J]. Journal of Applied Physics, 2016, 120(12): 1665.
    [90] LONSKY M, HEINZ S, DANIEL M V, et al. Electronic transport in thermoelectric YbzCo4Sb12 skutterudite thin films studied by resistance noise spectroscopy[J]. Journal of Applied Physics, 2016, 120(14): 433-448.
  • [1] 周靖贵, 陈匡黎, 周琦, 张波.  氮化镓基单片功率集成技术 . 电子科技大学学报, 2024, 53(): 1-12. doi: 10.12178/1001-0548.2024225
    [2] 钱吉裕, 魏涛, 王韬, 李秋燕, 吴传贵.  高性能硅基微流道优化方法研究 . 电子科技大学学报, 2020, 49(1): 92-97. doi: 10.12178/1001-0548.2018250
    [3] 陈君, 严磊, 王超, 赵新为, 闵忠华.  Mg2Si基热电材料的性能优化研究及其进展 . 电子科技大学学报, 2018, 47(5): 753-760. doi: 10.3969/j.issn.1001-0548.2018.05.018
    [4] 韩凯宁, 张珍兵, 胡剑浩, 陈杰男.  基于因子图的SCMA和LDPC联合检测和译码 . 电子科技大学学报, 2017, 46(5): 685-691, 794. doi: 10.3969/j.issn.1001-0548.2017.05.008
    [5] 王敏, 李文芳, 张果戈, 王晓军, 唐鹏.  BaxSr1-xTiO3微弧氧化铁电薄膜微观结构及电学性能 . 电子科技大学学报, 2015, 44(5): 778-783. doi: 10.3969/j.issn.1001-0548.2015.05.023
    [6] 杜辉, 李洋, 梁伟正, 高敏, 张胤, 林媛.  化学计量比对BaTiO3/Ni集成结构性能的影响 . 电子科技大学学报, 2015, 44(5): 784-788. doi: 10.3969/j.issn.1001-0548.2015.05.024
    [7] 段成丽, 蒋亚东, 叶宗标, 太惠玲.  基于超弹性基体的大应变复合材料制备与性能研究 . 电子科技大学学报, 2015, 44(1): 129-133. doi: 10.3969/j.issn.1001-0548.2015.01.022
    [8] 陈淑仙, 田鹤, 秦文峰, 李梦, 杨文锋, 唐庆如.  树脂基复合材料固化过程中的温度和热应力场三维瞬态分析 . 电子科技大学学报, 2014, 43(4): 547-551. doi: 10.3969/j.issn.1001-0548.2014.04.013
    [9] 徐洁, 李青, 林慧, 王洪.  MoO3源漏电极缓冲层对有机薄膜晶体管性能的影响 . 电子科技大学学报, 2012, 41(6): 941-943. doi: 10.3969/j.issn.1001-0548.2012.06.024
    [10] 高洋, 葛建华, 谢大平.  双差分协作传输的误码率性能分析和最佳功率分配 . 电子科技大学学报, 2011, 40(2): 185-191. doi: 10.3969/j.issn.1001-0548.2011.02.005
    [11] 鲁广铎, 邬劭轶, 张华明, 姚劲松.  CaTiO3中Co2+离子各向异性g因子的理论研究 . 电子科技大学学报, 2008, 37(6): 897-899.
    [12] 邬劭轶, 付强, 林季资, 张华明, 鲁广铎.  α-Al2O3中三角Ru3+中心的g因子研究 . 电子科技大学学报, 2008, 37(3): 408-410.
    [13] 葛启函, 邓宏, 陈航, 徐自强.  不同掺Al3+浓度的ZnO:Al薄膜性能研究 . 电子科技大学学报, 2006, 35(2): 253-256.
    [14] 李燕, 郝兰众, 邓宏, 张鹰, 姬红.  应力对LaAlO3/BaTiO3超晶格结构及性能的影响 . 电子科技大学学报, 2005, 34(3): 399-402.
    [15] 解梅, 张自然.  WCDMA系统功率控制研究 . 电子科技大学学报, 2003, 32(4): 354-357,379.
    [16] 董梅峰, 李慎, 龙华.  加权GS算法的权因子对BOE整形效果的影响 . 电子科技大学学报, 2003, 32(4): 395-398.
    [17] 张晓军, 陈海燕, 刘永智.  重迭因子对光波导放大器增益特性的影响 . 电子科技大学学报, 2001, 30(3): 250-253.
    [18] 韩春林, 赵志钦, 王建国.  不同小波基下的SAR图像相干斑抑制性能分析 . 电子科技大学学报, 2000, 29(6): 578-582.
    [19] 王守绪, 谢建志.  Sol-Gel法合成SrO-TiO2-SiO2:Eu3+,Bi3+发光材料 . 电子科技大学学报, 2000, 29(2): 218-220.
    [20] 陈勇, 于奇, 杨漠华.  MOS器件热电子退化的电子辐射实验研究 . 电子科技大学学报, 1997, 26(6): 666-669.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  10254
  • HTML全文浏览量:  4482
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2020-05-14
  • 网络出版日期:  2020-11-25
  • 刊出日期:  2020-11-23

CoSb3基方钴矿热电材料综述

doi: 10.12178/1001-0548.2019124
    基金项目:  国家自然科学基金(51672037, 61727818);四川省国际科技合作与交流研发项目 (2019YFH0009);国家重点研发计划(2017YFC0602102)
    作者简介:

    王超(1978-),男,博士,教授,主要从事热电材料及器件方面的研究. E-mail:cwang@uestc.edu.cn

  • 中图分类号: TN3

摘要: 热电材料是一种能够实现电能和热能相互转化的新型清洁能源材料。方钴矿热电材料利用其独特的笼状结构能大幅降低热导率,是中温段性能最好的热电材料之一。该文回顾了方钴矿化合物的热电性能,对方钴矿化合物热电性能的主要改善途径做了一些归纳总结,包括替位方钴矿、填充方钴矿、纳米结构方钴矿等。下一步的研究方向是扩展到热电器件的商业应用中。

English Abstract

王超, 张蕊, 姜晶, 牛夷, 杨铖铖, 周婷, 潘燕. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
引用本文: 王超, 张蕊, 姜晶, 牛夷, 杨铖铖, 周婷, 潘燕. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
WANG Chao, ZHANG Rui, JIANG Jing, NIU Yi, YANG Cheng-cheng, ZHOU Ting, PAN Yan. CoSb3 Based Skutterudites Thermoelectric Materials[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
Citation: WANG Chao, ZHANG Rui, JIANG Jing, NIU Yi, YANG Cheng-cheng, ZHOU Ting, PAN Yan. CoSb3 Based Skutterudites Thermoelectric Materials[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(6): 934-941. doi: 10.12178/1001-0548.2019124
  • 根据统计,目前人类对化石能源的消耗已经超过了现有预测储量的一半以上,很快地球上的化石能源将会枯竭耗尽[1]。而且,化石能源的使用过程也对环境造成了极大的破坏,不利于环境的可持续性发展。因此,发展新型的清洁可持续的绿色能源技术已迫在眉睫。

    事实上,除了风能、潮汐能和太阳能等清洁能源外,自然界和人类活动中还蕴藏着大量的热能未被开发利用,例如地热能以及现代工业生产和生活中排放的各种废热能等。利用塞贝克(Seebeck)效应,热电材料可以直接将地热能和废热能转换成电能,从而提高能源的利用率并减少环境污染,其研究为发展新型清洁能源技术打开了新的视角[2-5]

    • 影响热电系统的能量转换效率有很多因素,如:温差电元件的类型及性能、热量的损失、设备的整体精确度等,其中,最关键的因素是热电材料的性能。用无量纲的热电优值zT值来衡量热电材料的性能[6-7],表达式为:

      $$ {\rm{zT}} = \frac{{{\alpha ^2}T\sigma }}{\kappa } $$

      式中,T为绝对温度;α$ \sigma$κ分别为材料的塞贝克系数、电导率和热导率。

      图1列出了近年来热电材料的发展现状[8],总体而言,其发展可以分为3个时期[9]:1) zT值较低的第一个时期,此时热电材料的zT值不到1,热电器件的能量转换效率只有4%~5%;2) zT值突飞猛进的第二个时期,此时热电材料的zT值达到1.7,热电器件的能量转换效率提升到11%~15%[10-13];3) zT值突破2的第三个时期,此时热电器件的能量转换效率可以达到15%~20%[14-17]

      图  1  N型和P型热电材料的zT值随温度的变化趋势[8]

      高zT值意味着材料需要具有高的塞贝克系数、高的电导率以及低的热导率。然而,塞贝克系数、电导率、热导率这3个参数是相互影响彼此制约的,改变其中任何一个都会对另两个带来不利影响,很难同时优化。基于此,1995年,美国科学家Slack率先提出了“声子玻璃−电子晶体(PGEC)”的热电材料设计理念[18-19],认为好的热电材料应该同时具备像玻璃一样的声子传导特性以及像晶体一样的电子传导特性,从而同时具有低热导率和高电导率。方钴矿、笼化物材料(clathrates)和β-Zn4Sb3化合物等笼状化合物热电材料由于具有“声子玻璃−电子晶体(PGEC)”的特征而获得人们的广泛关注[20-25]。以方钴矿材料为例,由于其晶体结构中存在大量的本征晶格空洞,在这些晶格空洞中可以填充其他原子,通过填充原子在晶格空洞中的“rattling”振动极大地散射声子,从而显著降低材料的晶格热导率,进而优化材料的热电性能。近年来,随着热电理论体系的迅速发展,一些新型热电材料体系引起了人们的注意,2006年欧盟颁发的“WEEE”和“RoHS”条令,使得方钴矿作为中温段性能最好的热电材料之一,依然是热电领域研究的热点。

    • 方钴矿的英文名为Skutterudite,因最初是在挪威小镇Skutterud被发现而命名。方钴矿的化学通式为MX3,其中M表示铁(Fe)、钌(Ru)、锇(Os)、钴(Co)等过渡金属元素,X表示磷(P)、砷(As)、锑(Sb)等V族元素[26],其晶体结构如图2所示,具有复杂的体心立方结构,空间群为Im3。方钴矿的每个晶胞中共包含32个原子,为8个MX3单元,其中M原子占据8c位置,形成8个小立方体结构;X原子占据24g位置,每4个X原子组成一个四方环,形成6个四方环结构。在这8个小立方体结构中,有6个小立方体的中心被X原子构成的四方环占据,剩余2个没有被四方环占据的小立方体就形成了两个本征晶格空洞。而方钴矿材料的特点就在于这两个晶格空洞的存在,每个晶格空洞的半径可达1.89Å[27-28],可以在晶格空洞中填充稀土原子、碱土金属原子或镧系原子等其他原子,形成填充方钴矿。填充方钴矿的化学通式为RM4X12,其中R原子为填充原子,每个晶胞中有2个R原子。填充原子在空洞中的位移参数远远大于M原子和X原子,相当于这些原子在一个很大的由原子组成的笼子中“rattling”振动,因而可以极大地降低热导率。同时,方钴矿的电子传输主要由X原子构成的电子轨道决定,与形成“rattling”振动的原子在空间上是分离的,因而电导率受到的影响较小,从而表现出良好的“电子晶体−声子玻璃”特性。

      图  2  方钴矿化合物的晶体结构[8, 26]

      从方钴矿的晶体结构中可知,在CoSb3基方钴矿材料中,Sb原子与Sb原子之间存在较强的共价键,起到了稳定结构的作用,而Sb原子与Co原子之间存在较明显的共价杂化和弱离子相互作用,使材料显示出窄带隙特性[29]。文献[29]系统地研究了CoSb3基方钴矿的电子结构,发现CoSb3的导带底存在三重简并现象,主要由Sb原子轨道、Co原子轨道以及Sb-Co原子间的相互共价耦合组成,而价带顶主要由Sb原子轨道、Sb-Sb原子间的相互共价耦合以及少量的Co原子轨道组成,如图3所示,在CoSb3的能带结构中,导带底和价带顶均位于Γ点,是一种直接带隙半导体,室温环境下其费米能级位于带隙的中间位置,表现出本征半导体材料的特性[29]

      图  3  CoSb3方钴矿化合物的电子结构

      表1为CoSb3基方钴矿材料在室温下的各个物理参数,包括晶格常数、热膨胀系数、电阻率、塞贝克系数、晶格热导率等[30]

      表 1  CoSb3基方钴矿室温下的物理性能参数

      性能参数
      晶格常数/A9.0345
      德拜温度/K307
      热膨胀系数/10−6K6.36
      格林艾森常数0.952
      电阻率/mΩ·cm1.894
      霍尔迁移率/cm2·V−1·s−12835
      霍尔载流子浓度/1019cm−30.116
      塞贝克系数/μV·K−1220
      晶格热导率/W·m−1·K−110
      能带宽度/eV0.55

      从表中可以看到,未填充的CoSb3基方钴矿具有十分优异的电输运性能,其电阻率仅为1.9 mΩ·cm左右,但是晶格热导率很大,达到了10 W·m−1·K−1,过高的晶格热导率导致其热电性能较差,当温度为610 K时,未填充的CoSb3基方钴矿材料的最大zT值仅为0.17。由此可见,降低CoSb3基热电材料的晶格热导率是优化其热电性能的关键。

    • 通过替换Co或Sb位的原子可以形成具有不同导电类型的CoSb3基热电材料。同时,替位原子的引入相当于在CoSb3中形成了原子尺度的缺陷,进一步增加了声子散射中心,从而降低材料的晶格热导率。

    • 通过在Co位部分替换成镍(Ni)、钯(Pd)、铂(Pt)等施主原子[31-35],或者在Sb位部分替换成锗(Ge)、锡(Sn)、碲(Te)等施主原子时[36-42],可以形成n型的CoSb3基替位方钴矿。通常,Co或Sb位的原子替换将引起CoSb3材料晶格常数和电子传输特性的变化。一方面,施主原子的引入将使CoSb3材料的能带结构发生改变,进而影响其电子传输特性;另一方面,施主原子的引入也将导致CoSb3材料中的电子浓度显著增加,从而改变材料的电子−声子散射机制,并将在材料的晶格中引入更多的声子散射中心,增强对声子的散射。

      理论上,Sb位的替换可以更加显著地改善热传输性能,因为Sb原子主要是低频声子振动,而n型CoSb3方钴矿的传热声子模式主要是低频长波声子[43]。然而,实验发现Te原子的引入并没有如理论所述,很显著地提升材料的热电性能,化合物CoSb2.8Te0.2的zT值在800 K时仅为0.95[32],主要是因为Te原子的引入虽然可以散射更多低频长波段的声子,降低化合物的热导率,但同时也破坏了本征方钴矿的能带结构,使导带底的电子结构发生变化,降低了材料的电子迁移率。因此,Sb位的替换主要以双原子替位为主,特别是第六主族和第四主族双原子的替位,这两个主族双原子的引入能够起到平衡化合物内部载流子浓度的作用,使材料晶格热导率降低的同时,电输运性能基本保持不变。当温度为800 K时,CoSb2.75Ge0.05Te0.20的zT值为1.1[44];当温度为793 K时,CoSb2.75Te0.20Sn0.05的zT值为1.17[45];另外,与Te原子同主族的Se原子和S原子部分取代Te原子也能够增加材料的点缺陷而降低其热导率,进而优化其热电性能,室温时,Co4Sb11.3Te0.7−xSex的热导率降为1.8 W·m−1·K−1[46],当温度为800 K时,Co4Sb11.3Te0.58Se0.12材料的zT值为1.11[47],Co4Sb11.3Te0.63S0.07的zT值为1.1[48]

      实验发现Co原子和Sb原子同时被施主原子部分取代时,热电性能也能有效改善。目前为止,最好的结果是文献[49]通过高压转矩的方法合成的材料Fe0.2Co3.8Sb11.5Te0.5的zT值在820 K时达到1.3。Co原子位和Sb原子位的其他不同替换方式的掺杂也已经被广泛研究,当温度为800 K时,Ni, Te, Se三元掺杂的Co4−xNixSb11.9−yTeySe0.1化合物的zT值为1.1[50];873 K时,化合物Co3.5Sb11.8Pd0.5Se0.2的zT值为1.096[51]

    • 通过在Co位部分替换成铁(Fe)等受主原子时,可以形成p型的CoSb3基替位方钴矿。相较于n型材料,p型CoSb3材料的结构稳定性较差,这是由于Fe原子的核外电子数比Co原子少引起的,当用Fe原子部分取代Co原子时,由于核外电子的缺失,整个体系不能稳定存在,必须要在CoSb3的晶格空洞中再填入金属原子进行核外电子的补偿,才能形成结构稳定的p型CoSb3材料。

      文献[52]通过微波合成的方法研究了p型Co1−xFexSb3材料的热电性能,当温度为700 K时,该材料的zT值为0.33。文献[53]通过高压的方法制备了p型CoSb3基替位方钴矿材料并研究了其热电性能,相比于传统的熔融−退火制备方法,高压制备可以显著改善材料的热电性能,当温度为823 K时,Co3.2Fe0.8Sb12材料的zT值可以达到0.53,这是目前为止p型CoSb3基替位方钴矿中最好的热电性能。

    • 尽管替位掺杂可以优化系统的载流子浓度,降低热导率,但同时也破坏了本征方钴矿的电子结构,降低了材料的载流子迁移率,使得CoSb3基方钴矿热电性能的改善不是很显著。

      文献[54]首次提出了填充方钴矿的概念,通过在方钴矿的晶格空洞中填充合适的杂质原子可以极大优化材料的热电性能。从理论上来讲,填充原子可以是元素周期表中的任何一种元素,填充原子进入方钴矿的晶格空洞之后,将呈现出施主掺杂的特性,使材料呈现出n型半导体的导电特征。文献[55-56]的研究表明,填充原子与CoSb3原子之间的耦合较弱,填充原子在CoSb3晶格空洞中形成“rattling”的振动。在填充方钴矿中,填充原子可以提供额外的电子,从而增大整个材料的载流子浓度,同时,填充原子在晶格空洞中强烈的“rattling”振动,将在材料内部形成局域低频声子,这些低频的局域声子与本征晶格声子之间的交互作用将产生少量的被束缚能量,这部分能量将束缚部分晶格声子,使其波矢变得不连贯,从而增强对晶格声子的散射,使填充方钴矿材料的晶格热导率大幅度降低[57]

      文献[58]基于热力学竞争关系和电子结构计算分析,得到填充原子电负性选择规则的重要发现,即只有当填充原子与Sb原子之间的电负性差值大于0.8时,填充原子才能稳定地存在于方钴矿材料的晶格空洞中。而且,填充原子的填充量与其表现出来的有效价态也密切相关,有效价态越高,填充量越低[30]。这是由于填充原子与Sb原子之间存在相互吸引的作用,而填充原子与填充原子之间则存在库仑排斥的作用,因此,填充原子的有效价态越高,填充原子之间的库仑排斥力就会越大,填充量也就越小。另一方面,当填充原子满足了电负性选择规则的前提下,其在方钴矿晶格空洞中的填充上限与其原子直径大小以及方钴矿的晶格空洞大小也都有着密切的关系。文献[59]指出,对于CoSb3基方钴矿材料,只有当填充离子的半径与晶格空洞的半径之比在0.6~0.9时,填充原子才能稳定地存在于CoSb3的晶格空洞中。

      基于以上分析,理论上只有碱金属、碱土金属和部分稀土元素能够稳定填入方钴矿的晶格空洞中,如图4所示。一般地,碱金属元素表现出+1价的有效价态,而碱土金属元素的有效价态为+2价,稀土金属元素的有效价态更高,因此,碱金属原子具有比碱土金属原子和稀土原子更高的填充上限。

      图  4  电负性元素周期表

      进一步地,理论研究发现,填充多种具有不同振动频率的原子将能更好的改善方钴矿的热电性能[60-61]。不同填充原子具有不同的相对原子质量和半径,在方钴矿晶格空洞中的振动频率不同,使得晶格内部局域声子的振动频率分布变宽,更多的传热晶格声子被散射,从而比单原子填充系统更进一步地降低材料的晶格热导率,优化其热电性能。

      文献[62]采用放电等离子体烧结的制备技术首次合成Ce和La双原子填充方钴矿,材料的热导率降低到1.81 W·m−1·K−1,但由于其电输运性能较差,当温度为773 K时,Ce0.1La0.2FeCo3Sb12的zT值仅为0.6。随后一系列的双原子填充方钴矿被研究,如Ba–Yb[63]、Ba–Ce[64]、Ca–Ce[65]、Ca–Li[66]、Ca–Yb[67]、Sr–Yb[68]、Sr–Ba[68]、Ba–In[69]、Ce–In[70]、La-Al[71]、Nd-Yb[72]、La-Yb[73]、Pr-Nd[74]、Ce-Pr[75]、La-Pr[76]、Ce-Yb[77]等。

      近些年,通过组合不同振动频率的填充原子形成的三元填充方钴矿被认为相比双原子填充在不改变其电输运性能的前提下,能更显著地散射晶格声子,降低晶格热导率。当温度为850 K时,三元填充方钴矿Ba0.08La0.05Yb0.04Co4Sb12的zT值为1.7[78]。文献[79]系统地研究了一系列填充方钴矿的热电性能(R0.33Ba0.33Yb0.33)0.35Co4Sb12.3 (R=Sr,La,稀土金属混合物Mm,钕镨化合物DD,SrMm,SrDD),研究发现Sr、Ba、Yb这3种原子组合的填充方式可以使方钴矿的热电性能达到最优,通过熔融技术制备的三元填充方钴矿Sr0.09Ba0.11Yb0.05Co4Sb12,当温度为835 K时,zT值达到1.6。高压合成技术可以更进一步地改善该三元填充体系的热电性能,当温度为835 K时,zT值提升至1.9。

    • 纳米结构已经成为降低材料热导率的有效方式[80-81],然而,高温下纳米晶粒的生长仍然是一个很大的问题。文献[82]研制了一种具有微米−纳米−多孔微观结构的方钴矿化合物,该化合物包含不规则形状的纳米级至微米级尺寸的晶粒和随机取向的多孔结构,该结构可以使材料的晶格热导率降低到“声子玻璃”的极限,对于替位方钴矿Co23.4Sb69.1Si1.5Te6.0的zT值达到1.6,这是迄今为止,未填充方钴矿报道的最高zT值。

      纳米薄膜结构能够进一步改善材料的热电性能[83-84],但近些年,有关薄膜方钴矿的研究仅涉及到薄膜的制备和对薄膜结构的表征,对于热电性能的研究较少[85-88]。文献[89]采用分子束沉积技术制备了厚度仅为30 nm的方钴矿CoSb3薄膜材料,研究发现Sb原子的含量对材料的电输运性能有强烈的影响,未填充的薄膜方钴矿功率因子极低,并表现出双极传导现象,通过掺杂或替换能够有效改善薄膜材料的热电性能[90]

    • 近些年,方钴矿热电材料的性能已经取得了长足的进展,发现了一些能够大幅度降低热导率的同时,又保持良好电输运性能的方法。然而,距离热电材料的商业应用还有许多需要改善的地方,例如热电器件的效率、制备工艺、材料成本等,其中最关键因素就是热电器件的转换效率太低。热电性能进一步提升,从而形成材料和器件的商业化应用。

参考文献 (90)

目录

    /

    返回文章
    返回