基于BEEMD的单目测距图像区间阈值降噪算法

Interval Threshold Denoising Algorithm of Monocular Ranging Image Based on BEEMD

  • 摘要: 图像噪声是影响单目视觉定位精度的主要因素。该文在二维经验模态分解(BEMD)和阈值降噪方法的基础上,提出一种基于二维集合经验模态分解(BEEMD)的区间阈值图像噪声滤除方法。图像经过BEEMD分解为不同尺度的多个二维本征模态函数(IMF)分量和1个残余分量,依据图像和IMF分量的2范数准则和概率密度函数方法剔除纯噪声IMF分量,通过合理选择调节因子α,利用改进的区间阈值降噪方法实现图像降噪。将该算法应用于单目视觉测距中,并与BEMD算法进行对比,结果表明,该方法不仅能有效抑制BEMD中的模态混叠问题,而且能有效削弱图像噪声影响,从而提高单目视觉测距的精度和可靠性。

     

    Abstract: Image noise is the main factor affecting the accuracy of monocular vision positioning. Based onbidimensional empirical mode decomposition (BEMD) and threshold denoising, an interval threshold imagenoise filtering method based on bidimensional ensemble empirical mode decomposition (BEEMD) isproposed. The image is decomposed into multiple bidimensional intrinsic mode function (IMF) componentsand one residual component of different scales by BEEMD. The pure noise IMF components are eliminatedaccording to the 2-norm criterion and the probability density function method of image and IMFcomponents, the reasonable regulatory factor α is selected, and the image denoising is realized by theimproved interval threshold denoising method. The proposed algorithm is applied to monocular visionand compared with the BEMD algorithm. The results show that the method could not only effectivelysuppress the modal aliasing problem in BEMD, but also effectively reduce the influence of image noise, so theaccuracy and reliability of monocular vision are improved.

     

/

返回文章
返回