-
为了确保产品良率和产能,产品制造材料的表面形貌测试在制造业中显得尤为重要。而由于无损检测具备动态探测、非破坏性等特点,其在大规模工业制造的材料测试中日益成为一种发展趋势[1-3],物体表面形貌的无损探测便是其中的一个研究热点。X射线和超声波探测利用材料对X射线以及超声波的吸收、反射和散射对材料结构进行检测,多用于金属内部探伤。常规的物体表面形貌的检测手段例如光学显微镜,扫描电子显微镜(SEM)[4-5],原子力显微镜(AFM)[6]等虽然测试精度高,但是由于测试设备较大,不具有便携性,不利于样品的原位测试。而机械探针式[7-8]测量装置由于需要探针接触被测物表面,利用探针带动位移传感器感知表面的起伏,容易划伤物体表面。这些高精度测量技术多为实验级,设备大多笨重,不便于携带和日常生活中的应用。因此急需开发一种小型设备化和可便携的工业级表面形貌探测技术。基于这种需求,本文提出了一种基于大面积TFT阵列和PVDF薄膜的表面形貌探测技术。
TFT是一类场效应晶体管,采用薄膜制备技术并结合半导体制备工艺实现了晶体管薄膜化和大面积化。TFT因其薄膜化和有源性的特点,成为了如今TFT-LCD[9]及TFT-OLED[10]的核心组成器件,现已广泛应用于大尺寸液晶显示、便携式移动终端屏幕显示[11-12]等,但是鲜有将TFT薄膜晶体管应用于传感器等的报道。本文提出的基于PVDF和TFT阵列的传感器利用了TFT有源的特点,将PVDF进行像素化进而提高传感器分辨率,利用物体接触导致物体与薄膜整体电容改变的原理来实现物体表面形貌的探测。相比于光学显微镜等表面形貌探测技术,该技术更有利于实现器件小型化和便携化,具有较好的应用前景。
Nondestructive Detection of Surface Morphology Based on Large-Area TFT and PVDF Films
-
摘要: 针对物体表面形貌无损探测,提出了一种基于大面积薄膜晶体管(TFT)和聚偏氟乙烯(PVDF)薄膜的表面形貌探测方法,具有大面积、可覆形、便携化和高精度的特点。该方法利用电容传感器原理,将已广泛应用于半导体显示领域的TFT阵列与传感器相结合,可精确定位物体表面微米级缺陷,测量分辨率达到50 μm,实现了对物体表面形貌的精准无损探测。Abstract: Aiming at nondestructive detection of the surface morphology of objects, a method based on large-area thin-film transistor (TFT) arrays and poly(vinglidene) fluoride (PVDF) films was developed, which can cover a large area and different shapes while is also portable and highly accurate. This method applies the TFT array, which has been widely used in the semiconductor display field, to the sensor applications. The sensor combined with TFT arrays utilizes the principle of capacitive sensor to accurately detect the surface topography, which can accurately locate micron-level surface defects with a resolution of 50 μm.
-
Key words:
- PVDF /
- sensor /
- surface topography /
- TFT
-
[1] BRENNAN R E, GREEN W H, SANDS J M, et al. Nondestructive evaluation (nde) of damaged structural ceramics[C]//AIP Conference Proceedings. [S.l.]: AIP, 2009, 1096(1): 1091-1098. [2] KARAHALIOU A. Evaluation of railway rails with non-destructive techniques[C]//Key Engineering Materials. [S.l.]: Trans Tech Publications, 2014, 605: 641-644. [3] MA Zhi-chao, XU Zhi-mou, PENG Jing, et al. Nondestructive detection of nano grating by Sepctroscopic ellipsometer[J]. Acta Physica Sinica, 2014, 63(3): 39101. [4] 郭欣, 喻小桥, 贾春红. 扫描电镜法分析纸张形貌方法研究[J]. 造纸装备及材料, 2019, 48(2): 26-30. doi: 10.3969/j.issn.1672-3066.2019.02.010 GUO Xin, YU Xiao-qiao, JIA Chun-hong. Study on the method of analyzing paper morphology by scaning electron microscope[J]. Papermaking Equipment & Materials, 2019, 48(2): 26-30. doi: 10.3969/j.issn.1672-3066.2019.02.010 [5] 郭志峰. 阳极氧化法制备TiO2纳米管的场发射扫描电镜和原子力显微镜测试比较研究[J]. 安徽师范大学学报(自然科学版), 2018, 41(5): 454-458. GUO Zhi-feng. Comparative study on field emission scanning electron microscopy and atomic force microscopy of TiO2 Nanotubes prepared by anodizing[J]. Anhui Norm University (Nat Sci), 2018, 41(5): 454-458. [6] 王莹, 孙艳丽, 何珊, 等. 扫描电子显微镜和原子力显微镜对于酵母表面形貌观察的比较分析[J]. 电子显微学报, 2018, 37(2): 178-182. doi: 10.3969/j.issn.1000-6281.2018.02.011 WANG Ying, SUN Yan-li, HE Shan, et al. Research on the test of TiO2 Nanotubes prepared by anodic oxidation by FE-SEM and AFM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 178-182. doi: 10.3969/j.issn.1000-6281.2018.02.011 [7] STEPHAN R C, JOHN E G. Ball tip-stylus tilt correction for a stylus profilometer[J]. Precision Engineering, 2002, 26(4): 405-411. doi: 10.1016/S0141-6359(02)00118-6 [8] ISHIGAKI H, KAWAGUCHI I. Effect of a skid on the accuracy of measuring surface roughness[J]. Wear, 1981, 68(2): 203-211. doi: 10.1016/0043-1648(81)90088-0 [9] TADA M, MOCHIZUKI K, TSUNASHINMA T, et al. 12-1: An advanced LTPS TFT-LCD using top-gate oxide TFT in pixel[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 117-120. doi: 10.1002/sdtp.12497 [10] KIM H S, KIM D K. An active-matrix OLED driver CMOS IC with compensation of non-uniform routing-line resistances in ultra-thin panel bezel[J]. IEEE Journal of Solid-State Circuits, 2017, 53(2): 484-500. [11] STEUDEL S. Power saving through state retention in IGZO-TFT AMOLED displays for wearable applications[J]. Journal of the Society for Information Display, 2017, 25(4): 222-228. doi: 10.1002/jsid.544 [12] KIM J H, OH J, PARK K C, et al. IGZO TFT gate driver circuit with large threshold voltage margin[J]. Displays, 2018, 53: 1-7. doi: 10.1016/j.displa.2018.03.003