-
粗糙集理论是由Pawlak[1]于1982年提出的,它是一种处理不一致、不完备和不精确信息的有效工具。近年来,粗糙集理论已被成功地应用于诸多领域,如知识发现、数据挖掘及模式识别等。
Shannon[2]提出的信息熵是一种度量不确定性的重要工具,已被广泛地应用于许多领域。在粗糙集理论中,针对划分情形,文献[3-4]给出了粗糙集理论中主要概念与运算的信息表示,研究了知识的粗糙性与信息熵之间的关系。文献[5]研究了粗糙集理论的香农熵度量和哈特莱熵度量,并给出了公理化性质。文献[6]利用信息熵的最小描述长度原则,提出了3种模型选择准则,且定义了3种条件熵来预测属性重要性。文献[7]研究了粗糙集和粗糙关系数据库的粗糙熵度量。文献[8]提出了一种基于信息增益互补的信息熵并验证了其合理性,并在此基础上,引入了条件熵和互信息。文献[9]从信息熵、粗糙熵和知识粒度角度研究了粗糙集理论的不确定性。文献[10]研究了划分情形的信息熵与补熵,并将其扩展到覆盖情形,虽然覆盖情形下的熵是香农熵的形式,但其不满足单调性。目前,划分情形的熵度量已得到了完善解决。
区间值信息系统作为单值信息系统的一种推广,能很好地描述不精确的对象和保存数据的特征。在区间值信息系统中,基于区间值的相似度构建相容关系,由相容关系产生的相容类构成论域的覆盖。关于该情形下的熵度量,文献[11]研究了区间值和集值信息系统基于模糊偏序关系的模糊粗糙熵和模糊知识粒度,并研究了熵度量与粒度度量之间的关系。文献[12]通过引入相似度的概念定义了基于相容关系的θ-相容类,并提出用θ-相似熵来度量区间值信息系统的不确定性。文献[13]定义了α-弱相似关系,建立了基于α-弱相似关系的粗糙集模型,并给出不完备区间值信息系统的精度、粗糙度和近似精度,用以度量不完备区间值信息系统的不确定性。虽然学者们对区间值信息系统的不确定性度量进行了研究,但仍缺少香农熵形式的熵度量。鉴于此,本文给出了一种由覆盖导出划分的方法,并证明了覆盖越细,由其导出的划分越细,进而构造了区间值信息系统的信息熵与补熵,并且证明了它们的单调性和有界性。
-
本节简要回顾了一些基本概念及其性质。
定义 1.1[1] 设
$U$ 为论域,称$R \subseteq U \times U$ 为$U$ 上的一个二元关系。若$R$ 满足自反性、对称性、传递性,则称之为$U$ 上的一个等价关系。称${\left[ x \right]_R} = \left\{ {y\left. { \in U} \right|} \right. \left( {x,y} \right) \in \left. R \right\}$ 为元素$x$ 的$R$ 等价类。显然由所有等价类构成的集合为论域
$U$ 的一个划分。定义 1.2[1] 设
$U$ 是论域,${\pi _1} = \left\{ {{X_1},{X_2}, \cdots ,{X_m}} \right\}$ 和${\pi _2} = \left\{ {{Y_1},{Y_2}, \cdots ,{Y_m}} \right\}$ 是$U$ 上的两个划分,若对于任意的${X_i} \in {\pi _1}$ ,存在${Y_j} \in {\pi _2}$ ,使得${X_i} \subseteq {Y_j}$ ,则称${\pi _1}$ 细于${\pi _2}$ (或${\pi _2}$ 粗于${\pi _1}$ ),记作${\pi _1} \leqslant {\pi _2}$ 。若
${\pi _1} \leqslant {\pi _2}$ ,且${\pi _1} \ne {\pi _2}$ ,则称${\pi _1}$ 严格细于${\pi _2}$ (或${\pi _2}$ 严格粗于${\pi _1}$ ),记作${\pi _1} < {\pi _2}$ 。定义 1.3[12] 区间值信息系统可表示为一个四元组
$S = \left( {U,A,V,f} \right)$ ,其中,1)
$U$ 是非空有限对象集,称为论域;2)
$A$ 是非空有限属性集;3)
$V$ 为$U$ 中所有对象在$A$ 属性集下的值域,${V_a}$ 是属性$a$ 的取值构成的集合,称为$a$ 的值域;4)
$f:U \times A \to V$ 称为信息函数,它表示对象$x$ 在属性$a$ 下的取值,即$\forall x \in U$ ,$a \in A$ ,有$f\left( {x,a} \right) \in {V_a}$ ,其中$f\left( {x,a} \right)$ 是区间数。定义 1.4[14] 设
$a = \left[ {{a^ - },{a^ + }} \right]$ ,$b = \left[ {{b^ - },{b^ + }} \right]$ 是两个区间数,$a$ 关于$b$ 的可能度定义为:$$ P\left( {a,b} \right) = \min \left\{ {1,\max \left\{ {\frac{{{a^ + } - {b^ - }}}{{\left( {{a^ + } - {a^ - }} \right) + \left( {{b^ + } - {b^ - }} \right)}},0} \right\}} \right\}\; $$ 定义 1.5[14] 设
$a = \left[ {{a^ - },{a^ + }} \right]$ ,$b = \left[ {{b^ - },{b^ + }} \right]$ 是两个区间数,$a$ 和$b$ 的相似度定义为:$$S\left( {a,b} \right) = 1 - \left| {P\left( {a,b} \right) - P\left( {b,a} \right)} \right|\;$$ 定义 1.6[14] 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,给定$\theta \in \left( {0,\left. 1 \right]} \right.$ ,$P \subseteq A$ ,论域$U$ 上的关系定义为:$$ S_P^\theta = \left\{ {\left( {x,y} \right) \in \left. {U \times U} \right|} \right.S\left( {a(x),a(y)} \right) \geqslant \theta ,\forall a \in \left. P \right\} $$ 显然,
$S_P^\theta $ 是论域$U$ 上的相容关系。称
$S_P^\theta \left( x \right) = \left\{ {y \in \left. U \right|} \right.\left( {x,y} \right) \in \left. {S_P^\theta } \right\}$ 为元素$x$ 在相容关系$S_P^\theta $ 下的相容类。性质 1.1[14] 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,则有如下性质:1) 若
${P_1} \subseteq {P_2} \subseteq A$ ,则对于任意的$ \theta \in (0,1]$ ,$x \in U$ ,有$S_{{P_2}}^\theta \left( x \right) \subseteq S_{{P_1}}^\theta \left( x \right)$ ;2) 若
$0 < {\theta _1} \leqslant {\theta _2} \leqslant 1$ ,则对于任意的$P \subseteq A$ ,有$S_P^{{\theta _2}}\left( x \right) \subseteq S_P^{{\theta _1}}\left( x \right)$ 。 -
本节给出了一种由覆盖导出划分的方法,并证明了覆盖越细,由其导出的划分越细。
定义 2.1[15] 设
$U$ 是论域,${\mathbb{C}} = \left\{ {K\left. {} \right|} \right.\left. {K \subseteq U} \right\}$ 是$U$ 的一个子集族,如果${\mathbb{C}}$ 中任一元素$K$ 非空,且$\mathop \cup \limits_{K \in {\mathbb{C}}} K = U$ ,则称${\mathbb{C}}$ 是$U$ 的覆盖,称$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间。定义 2.2[15] 设
$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间,对任意的$x \in U$ ,$x$ 在$\left( {U,{\mathbb{C}}} \right)$ 中的邻域定义为:$${N_{\mathbb{C}}}\left( x \right) = \cap \left\{ {K \in \left. {\mathbb{C}} \right|} \right.\left. {x \in K} \right\} = \cap {\mathbb{C}}\left( x \right)\;$$ 式中,
$ {\mathbb{C}}\left( x \right) = \left\{ {K \in \left. {\mathbb{C}} \right|} \right.\left. {x \in K} \right\}$ 。等价关系和划分是一一对应的。在给定划分构造等价关系的过程中,其做法是先定义了一个关系R,即:
$\forall x,y \in U,xRy \Leftrightarrow $ 元素$x,y$ 在同一个划分块。然后验证该关系R是等价关系。受此启发,上述方法能否推广到覆盖情形?仿照上面的做法,利用覆盖定义如下关系:
$\forall x,y \in U, xRy \Leftrightarrow x,y$ 始终同时出现在不同的覆盖块中。即:
$\forall x,y \in U,xRy \Leftrightarrow x \in \cap {\mathbb{C}}\left( y \right) \wedge y \in \cap {\mathbb{C}}\left( x \right) $ 该关系的符号化定义如下。
定义 2.3 设
$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间,${\mathbb{C}} = \left\{ {{C_1}} \right., {C_2}, \cdots ,\left. {{C_n}} \right\}$ 是论域$U$ 上的一个覆盖,对$\forall x,y \in U$ ,利用覆盖${\mathbb{C}}$ 定义关系R为:$$xRy \Leftrightarrow x \in {N_{\mathbb{C}}}\left( y \right) \wedge y \in {N_{\mathbb{C}}}\left( x \right)$$ 式中,
${N_{\mathbb{C}}}\left( x \right)$ 、${N_{\mathbb{C}}}\left( y \right)$ 为$x$ 、$ y$ 的邻域。引理 2.1[16] 设
$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间,对$\forall x,y \in U$ ,若$x \in {N_{\mathbb{C}}}\left( y \right)$ ,则有${N_{\mathbb{C}}}\left( x \right) \subseteq {N_{\mathbb{C}}}\left( y \right)$ 。根据此引理容易证明定义2.3中的关系是等价关系。因此,定义2.3有如下等价定义。
定义 2.4 设
$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间,对$\forall x,y \in U$ ,利用覆盖${\mathbb{C}}$ 定义的关系$R$ 为:$$xRy \Leftrightarrow {N_{\mathbb{C}}}\left( x \right) = {N_{\mathbb{C}}}\left( y \right)\;$$ 由关系R导出的等价类记为:
$${\left[ x \right]_R} = \left\{ {y \in \left. U \right|} \right.\left. {{N_{\mathbb{C}}}\left( x \right) = {N_{\mathbb{C}}}\left( y \right)} \right\}$$ 由覆盖导出划分后,覆盖粗细与划分粗细是否保持一致呢?下面来具体分析。
定义 2.5[17] 设
$U$ 是论域,${{\mathbb{C}}_1} = \left\{ {{C_{11}}} \right., {C_{12}}, \cdots , \left. {{C_{1m}}} \right\}\;$ ,${{\mathbb{C}}_2} = \left\{ {{C_{21}}} \right.,{C_{22}}, \cdots ,\left. {{C_{2n}}} \right\}$ 是$U$ 上的两个覆盖,对于任意的$x \in U$ ,若${{\mathbb{C}}_1}\left( x \right)$ 和${{\mathbb{C}}_2}\left( x \right)$ 满足如下条件:1)
$\forall {C_{1i}} \in {{\mathbb{C}}_1}\left( x \right)$ ,$\exists {C_{2j}} \in {{\mathbb{C}}_2}\left( x \right)$ ,使得${C_{1i}} \subseteq {C_{2j}}$ ;2)
$\forall {C_{2j}} \in {{\mathbb{C}}_2}\left( x \right)$ ,$\exists {C_{1i}} \in {{\mathbb{C}}_1}\left( x \right)$ ,使得${C_{1i}} \subseteq {C_{2j}}$ ;则称
${{\mathbb{C}}_1}$ 细于${{\mathbb{C}}_2}$ (或${{\mathbb{C}}_2}$ 粗于${{\mathbb{C}}_1}$ ),记作${{\mathbb{C}}_1} \leqslant {{\mathbb{C}}_2}$ ,其中,${\mathbb{C}}\left( x \right) = \left\{ {\left. {K \in {\mathbb{C}}} \right|} \right.\left. {x \in K} \right\}$ 。若
${{\mathbb{C}}_1} \leqslant {{\mathbb{C}}_2}$ ,且${{\mathbb{C}}_1} \ne {{\mathbb{C}}_2}$ ,则称${{\mathbb{C}}_1}$ 严格细于${{\mathbb{C}}_2}$ (或${{\mathbb{C}}_2}$ 严格粗于${{\mathbb{C}}_1}$ ),记作${{\mathbb{C}}_1} < {{\mathbb{C}}_2}$ 。由此可见,当覆盖退化为划分时,其粗细关系与预备知识中定义1.2的划分粗细关系保持一致。
定理 2.1 设
$\left( {U,{\mathbb{C}}} \right)$ 为覆盖近似空间,${{\mathbb{C}}_1} = \left\{ {{C_{11}}} \right., {C_{12}}, \cdots ,\left. {{C_{1m}}} \right\}$ ,${{\mathbb{C}}_2} = \left\{ {{C_{21}}} \right.,{C_{22}}, \cdots ,\left. {{C_{2n}}} \right\}$ 是$U$ 的两个覆盖,覆盖${{\mathbb{C}}_1}$ 和${{\mathbb{C}}_2}$ 导出的划分分别为${\pi _1}$ 、${\pi _2}$ ,若${{\mathbb{C}}_1} \leqslant {{\mathbb{C}}_2}$ ,则${\pi _1} \leqslant {\pi _2}$ 。该定理表明了覆盖越细,则由其导出的划分越细。因此,用划分熵度量覆盖的不确定性是合理的。
-
本节构造
$\theta $ -信息熵和$\theta $ -补熵来度量区间值信息系统的不确定性,并证明它们的单调性和有界性。定义 3.1 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,${\mathbb{C}}$ 是属性集A的相容类构成的覆盖,给定$\theta \in \left( {0,\left. 1 \right]} \right.$ ,对$\forall x,y \in U$ ,利用覆盖${\mathbb{C}}$ 定义的关系R:$xRy \Leftrightarrow N_{\mathbb{C}}^\theta \left( x \right) = N_{\mathbb{C}}^\theta \left( y \right)$ ,其中$N_{\mathbb{C}}^\theta \left( x \right)$ 、$N_{\mathbb{C}}^\theta \left( y \right)$ 分别为$x\text{、}y$ 的$\theta $ -邻域。易证该关系R是等价关系,由关系R导出的
$\theta $ -等价类记为:$$\left[ x \right]_R^\theta = \left\{ {\left. {\left. {y \in U} \right|N_{\mathbb{C}}^\theta \left( x \right) = N_{\mathbb{C}}^\theta \left( y \right)} \right\}} \right.$$ 定义 3.2 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 是由属性集A导出的划分,且$\pi $ 中元素所对应的概率分布为:$$\left( {\pi ;p} \right) = \left( {\begin{array}{*{20}{c}} {{X_1}}&{{X_2}}& \cdots &{{X_m}} \\ {p\left( {{X_1}} \right)}&{p\left( {{X_2}} \right)}& \cdots &{p\left( {{X_m}} \right)} \end{array}} \right)$$ 给定
$\theta \in \left( {0,\left. 1 \right]} \right.$ ,属性集的$\theta $ -信息熵定义为:$$\begin{gathered} {H^\theta }(A) = - \sum\limits_{k = 1}^m {p\left( {{X_k}} \right)} \log p\left( {{X_k}} \right) = \\ - \sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \frac{{\left| {{X_k}} \right|}}{{\left| U \right|}} = - \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ x \right]_R^\theta } \right|}}{{\left| U \right|}}} \end{gathered} $$ 式中,
$ p\left( {{X_k}} \right) = \dfrac{{\left| {{X_k}} \right|}}{{\left| U \right|}}$ 。从该定义可以看出属性集
$A$ 的$\theta $ -信息熵等于$U$ 上每个元素提供的$\theta $ -自信息之和的算术平均值。定理 3.1 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,1) 若
$P \subseteq Q \subseteq A$ ,$\forall \theta \in \left( {0,\left. 1 \right]} \right.$ ,则${H^\theta }\left( Q \right) \geqslant {H^\theta }\left( P \right)$ ;2) 若
$0 < {\theta _1} \leqslant {\theta _2} \leqslant 1$ ,$\forall P \subseteq A$ ,则${H^{{\theta _2}}}\left( P \right) \geqslant {H^{{\theta _1}}}\left( P \right)$ 。证明:1) 令
$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,${{\mathbb{C}}_1}$ 、${{\mathbb{C}}_2}$ 分别为属性集P、$Q$ 的相容类构成的覆盖,${\pi _1} = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 与${\pi _2} = \left\{ {\left. {{Y_1},{Y_2}, \cdots ,{Y_j}} \right\}} \right.$ 分别为覆盖${{\mathbb{C}}_1}$ 和${{\mathbb{C}}_2}$ 导出的划分,因为$ P \subseteq Q \subseteq A$ ,根据性质1.1可知对$\forall x \in U, \forall \theta \in \left( {0,\left. 1 \right]} \right.$ ,有$S_Q^\theta \left( x \right) \subseteq S_P^\theta \left( x \right)$ ,所以$ {{\mathbb{C}}_2} \leqslant {{\mathbb{C}}_1}$ 。根据定理2.1可得${\pi _2} \leqslant {\pi _1}$ ,所以$ \left[ {{x_i}} \right]_{{R_Q}}^\theta \subseteq \left[ {{x_i}} \right]_{{R_P}}^\theta $ ,其中$\left[ {{x_i}} \right]_{{R_Q}}^\theta $ ,$\left[ {{x_i}} \right]_{{R_P}}^\theta $ 为定义3.1中所定义的$\theta $ -等价类,所以$ \left| {\left[ {{x_i}} \right]_{{R_Q}}^\theta } \right| \leqslant \left| {\left[ {{x_i}} \right]_{{R_P}}^\theta } \right|\; $ 。因为${H^\theta }\left( A \right) = - \displaystyle\sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \frac{{\left| {{X_k}} \right|}}{{\left| U \right|}} = - \frac{1}{{\left| U \right|}} \displaystyle\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ x \right]_R^\theta } \right|}}{{\left| U \right|}}}$ ,所以$ {H^\theta }\left( Q \right) \geqslant {H^\theta }\left( P \right) $ 。2) 令
$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,${{\mathbb{C}}'_1}$ 、${{\mathbb{C}}'_2}$ 分别为属性集$P$ 在${\theta _1}$ 、${\theta _2}$ 下的相容类构成的覆盖,${\pi '_1} = \{ {X'_1},{X'_2}, \cdots , {X'_m} \} $ 与${\pi '_2} = \{{Y'_1},{Y'_2}, \cdots , {Y'_j} \} $ 分别为覆盖${{\mathbb{C}}'_1}$ 和${{\mathbb{C}}'_2}$ 导出的划分。因为$0 < {\theta _1} \leqslant {\theta _2} \leqslant 1$ ,根据性质1.1可知$\forall P \subseteq A$ ,$S_P^{{\theta _2}} \left( x \right) \subseteq S_P^{{\theta _1}}\left( x \right)$ ,所以${{\mathbb{C}}'_2} \leqslant {{\mathbb{C}}'_1}$ ,根据定理2.1可得${\pi '_2} \leqslant {\pi '_1}$ ,所以$\left[ {{x_i}} \right]_R^{{\theta _2}} \subseteq \left[ {{x_i}} \right]_R^{{\theta _1}}$ ,所以$ \left| {\left[ {{x_i}} \right]_R^{{\theta _2}}} \right| \leqslant \left| {\left[ {{x_i}} \right]_R^{{\theta _1}}} \right|\;$ 。因为${H^\theta }\left( A \right) = - \displaystyle\sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \displaystyle\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}} = - \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n \log \displaystyle \frac{{\left| {\left[ x \right]_R^\theta } \right|}}{{\left| U \right|}} $ ,所以${H^{{\theta _2}}}\left( P \right) \geqslant {H^{{\theta _1}}}\left( P \right)\; $ 。定理 3.2 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 是由属性集$A$ 导出的划分,$\theta $ -信息熵的最大值为$\log \left| U \right|$ ,当且仅当$\pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right.$ 。证明:
充分性: 当
$ \pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right. $ 时,有:$$\begin{gathered} {{H^\theta }\left( A \right)}{ = - \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = - \frac{1}{{\left| U \right|}} \left| U \right|\log \frac{1}{{\left| U \right|}}}= \\ { - \log \frac{1}{{\left| U \right|}} = \log \left| U \right|} \end{gathered}$$ 必要性:要证
${H^\theta }\left( A \right) = - \dfrac{1}{{\left| U \right|}}\displaystyle\sum\limits_{i = 1}^n {\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = \log \left| U \right|$ ,则需证$\displaystyle\sum\limits_{i = 1}^n {\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = \left| U \right|\log \dfrac{1}{{\left| U \right|}}$ 。因为
$\left| U \right| = n $ ,所以$\displaystyle\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = n\log \frac{1}{{\left| U \right|}} = \log \displaystyle\frac{1}{{{{\left| U \right|}^n}}}$ 。因为${ \displaystyle\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} } = \log \displaystyle\frac{{\left| {\left[ {{x_1}} \right]_R^\theta } \right|}}{{\left| U \right|}} + \log \frac{{\left| {\left[ {{x_2}} \right]_R^\theta } \right|}}{{\left| U \right|}} + \cdots +\log \displaystyle\frac{{\left| {\left[ {{x_n}} \right]_R^\theta } \right|}}{{\left| U \right|}}= \log \frac{{\left| {\left[ {{x_1}} \right]_R^\theta } \right| \times \left| {\left[ {{x_2}} \right]_R^\theta } \right| \times \cdots \times \left| {\left[ {{x_n}} \right]_R^\theta } \right|}}{{{{\left| U \right|}^n}}}$ ,所以,要使$\displaystyle\sum\limits_{i = 1}^n {\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = \left| U \right|\log \dfrac{1}{{\left| U \right|}}$ ,只需$\left| {\left[ {{x_i}} \right]_R^\theta } \right| = 1$ 。综上,当
$\pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right.$ 时,结论成立。定理 3.3 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 是由属性集A导出的划分,$\theta $ -信息熵的最小值为$0$ ,当且仅当$\pi = \left\{ {\left. U \right\}} \right.$ 。证明:
充分性:当
$ \pi = \left\{ {\left. U \right\}} \right. $ 时,有:$$ {H^\theta }\left( A \right) = - \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = - \frac{1}{{\left| U \right|}} \left| U \right| \log \frac{{\left| U \right|}}{{\left| U \right|}} = 0{\text{。}} $$ 必要性:要证
$ {H^\theta }\left( A \right) = - \dfrac{1}{{\left| U \right|}}\displaystyle\sum\limits_{i = 1}^n {\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = 0$ ,则需证$\displaystyle\sum\limits_{i = 1}^n {\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = 0,$ 因为$\left| {\left[ {{x_i}} \right]_R^\theta } \right| \geqslant 1$ ,所以$0 \leqslant \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}} \leqslant 1$ ,所以$\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}} \leqslant 0$ ,所以要使$\displaystyle\sum\limits_{i = 1}^n \log {\dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} = 0$ ,只需$\log \dfrac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}} = 0$ ,即$\left| {\left[ {{x_i}} \right]_R^\theta } \right| = \left| U \right|$ 。综上,当
$\pi = \left\{ {\left. U \right\}} \right.$ 时,结论成立。文献[11]提出了基于划分的哈特莱熵度量即补熵度量,也叫粒度度量。下面利用覆盖导出的划分定义区间值信息系统的补熵。
定义 3.3 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 是由属性集A导出的划分,且$\pi $ 中元素所对应的概率分布为:$$\left( {\pi ;p} \right) = \left( {\begin{array}{*{20}{c}} {{X_1}}&{{X_2}}& \cdots &{{X_m}} \\ {p\left( {{X_1}} \right)}&{p\left( {{X_2}} \right)}& \cdots &{p\left( {{X_m}} \right)} \end{array}} \right)$$ 给定
$\theta \in \left( {\left. {0,1} \right]} \right.$ ,属性集A的$\theta $ -补熵定义为:$$\begin{gathered} {{E^\theta }\left( A \right)}{ = \sum\limits_{k = 1}^m {p\left( {{X_k}} \right)} \log \left| {{X_k}} \right|}= \\ {}{ \sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \left| {{X_k}} \right|}= {}{ \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} } \end{gathered}$$ 式中,
$p\left( {{X_k}} \right) = \dfrac{{\left| {{X_k}} \right|}}{{\left| U \right|}}$ 。从该定义可以看出属性集
$A$ 的$\theta $ -补熵等于$U$ 上每个元素的$\theta $ -补熵之和的算术平均值。定理 3.4 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,则:1) 若
$P \subseteq Q \subseteq A$ ,$\forall \theta \in \left( {\left. {0,1} \right]} \right.$ ,则${E^\theta }\left( P \right) \geqslant {E^\theta }\left( Q \right)$ ;2) 若
$0 < {\theta _1} \leqslant {\theta _2} \leqslant 1$ ,$\forall P \subseteq A$ ,则${E^{{\theta _1}}}\left( P \right) \geqslant {E^{{\theta _2}}}\left( P \right)$ 。证明:
1) 令
$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,${{\mathbb{C}}_1}$ 、${{\mathbb{C}}_2}$ 分别为属性集$P$ 、$Q$ 的相容类构成的覆盖,${\pi _1} = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 与${\pi _2} = \left\{ {\left. {{Y_1},{Y_2}, \cdots ,{Y_j}} \right\}} \right.$ 分别为覆盖${{\mathbb{C}}_1}$ 和${{\mathbb{C}}_2}$ 导出的划分。因为$P \subseteq Q \subseteq A$ ,根据性质1.1可知$\forall \theta \in \left( {\left. {0,1} \right]} \right.$ ,有$S_Q^\theta \left( x \right) \subseteq S_P^\theta \left( x \right)$ ,所以${{\mathbb{C}}_2} \leqslant {{\mathbb{C}}_1}$ ,根据定理2.1可得${\pi _2} \leqslant {\pi _1}$ ,所以$\left[ {{x_i}} \right]_{{R_Q}}^\theta \subseteq \left[ {{x_i}} \right]_{{R_P}}^\theta, \text{所以}\left| {\left[ {{x_i}} \right]_{{R_Q}}^\theta } \right| \leqslant \left| {\left[ {{x_i}} \right]_{{R_P}}^\theta } \right| $ 。因为${E^\theta }\left( A \right) = \displaystyle\sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \left| {{X_k}} \right| = \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|}$ ,所以${E^\theta }\left( P \right) \geqslant {E^\theta }\left( Q \right) $ 。2) 令
$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,${{\mathbb{C}}'_1}$ 、${{\mathbb{C}}'_2}$ 分别为属性集$P$ 在${\theta _1}$ 、${\theta _2}$ 下相容类构成的覆盖,${\pi '_1} = \left\{ {\left. {{X'_1},{X'_2}, \cdots ,{X'_m}} \right\}} \right.$ 与${\pi '_2} = \left\{ {\left. {{Y'_1},{Y'_2}, \cdots ,{Y'_j}} \right\}} \right.$ 分别为覆盖${\mathbb{C}}'$ 和${{\mathbb{C}}'_2}$ 导出的划分。因为$ 0 < {\theta _1} \leqslant {\theta _2} \leqslant 1$ ,根据性质1.1可知对$\forall P \subseteq A$ ,有$S_P^{{\theta _2}}\left( x \right) \subseteq S_P^{{\theta _1}}\left( x \right)$ ,所为$ {{\mathbb{C}}'_2} \leqslant {{\mathbb{C}}'_1}$ ,根据定理2.1可得${\pi '_2} \leqslant {\pi '_1}$ ,所以$\left[ {{x_i}} \right]_R^{{\theta _2}} \subseteq \left[ {{x_i}} \right]_R^{{\theta _1}} $ ,所以$\left| {\left[ {{x_i}} \right]_R^{{\theta _2}}} \right| \leqslant \left| {\left[ {{x_i}} \right]_R^{{\theta _1}}} \right| $ 。因为${E^\theta }\left( A \right) = \displaystyle\sum\limits_{k = 1}^m {\frac{{\left| {{X_k}} \right|}}{{\left| U \right|}}} \log \left| {{X_k}} \right| = \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} $ ,所以${E^{{\theta _1}}}\left( P \right) \geqslant {E^{{\theta _2}}}\left( P \right) $ 。定理 3.5 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots ,{X_m}} \right\}} \right.$ 是由属性集A导出的划分,$\theta $ -补熵${E^\theta }\left( A \right)$ 的最大值为$\log \left| U \right|$ ,当且仅当$\pi = \left\{ {\left. U \right\}} \right.$ 。证明:
充分性:当
$ \pi = \left\{ {\left. U \right\}} \right.$ 时,有:$$ {E^\theta }\left( A \right) = \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \frac{1}{{\left| U \right|}} \left| U \right| \log \left| U \right| = \log \left| U \right| $$ 必要性:要证
${E^\theta }\left( A \right) =\displaystyle \frac{1}{{\left| U \right|}} \sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \log \left| U \right|,$ 需证$\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \left| U \right|\log \left| U \right|$ 。因为
$\left| U \right| = n $ ,所以$\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = n\log \left| U \right| = \log {\left| U \right|^n} $ 。因为${ \displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} } = \log \left| {\left[ {{x_1}} \right]_R^\theta } \right| + \log \left| {\left[ {{x_2}} \right]_R^\theta } \right| + \cdots +$ $\log \left| {\left[ {{x_n}} \right]_R^\theta } \right| = {}{ \log \left( {\left| {\left[ {{x_1}} \right]_R^\theta } \right| \times \left| {\left[ {{x_2}} \right]_R^\theta } \right| \times \cdots \times \left| {\left[ {{x_n}} \right]_R^\theta } \right|} \right)}$ ,所以要使$\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \left| U \right|\log \left| U \right|$ ,只需$\left| {\left[ {{x_i}} \right]_R^\theta } \right| = \left| U \right|$ 。综上,当$\pi = \left\{ {\left. U \right\}} \right.$ 时,结论成立。要使
$\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \left| U \right|\log \left| U \right|$ ,只需$\left| {\left[ {{x_i}} \right]_R^\theta } \right| = \left| U \right|$ 。综上,当$\pi = \left\{ {\left. U \right\}} \right.$ 时,结论成立。定理 3.6 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots, {X_m}} \right\}} \right.$ 是由属性集A导出的划分,$\theta $ -补熵${E^\theta }\left( A \right)$ 的最小值为$0$ ,当且仅当$\pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right.$ 。证明:
充分性:当
$ \pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right. $ 时,有:$$ {E^\theta }\left( A \right) = \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = \frac{1}{{\left| U \right|}} \left| U \right| \log 1 = 0\; $$ 必要性:要证
${E^\theta }\left( A \right) = \dfrac{1}{{\left| U \right|}}\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = 0$ ,则需证$\displaystyle\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|} = 0$ ,因为$ \left| {\left[ {{x_i}} \right]_R^\theta } \right| \geqslant 1$ ,所以要使$\displaystyle\sum\limits_{i = 1}^n \log {\left| {\left[ {{x_i}} \right]_R^\theta } \right|} = 0$ ,只需$\log \left| {\left[ {{x_i}} \right]_R^\theta } \right| = 0$ ,即$\left| {\left[ {{x_i}} \right]_R^\theta } \right| = 1$ 。综上,当$\pi = \left\{ {\left. {\left. {\left\{ {\left. x \right\}} \right.} \right|x \in U} \right\}} \right.$ 时,结论成立。定理 3.7 设
$S = \left( {U,A,V,f} \right)$ 是区间值信息系统,$U = \left\{ {\left. {{x_1},{x_2}, \cdots ,{x_n}} \right\}} \right.$ ,$\pi = \left\{ {\left. {{X_1},{X_2}, \cdots, {X_m}} \right\}} \right.$ 是由属性集A导出的划分,则:$${H^\theta }\left( A \right) + {E^\theta }\left( A \right) = \log \left| U \right|\;$$ 证明:
$$\begin{gathered} {H^\theta }\left( A \right) + {E^\theta }\left( A \right) = - \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} + \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right|}= \\ \frac{1}{{\left| U \right|}}\sum\limits_{i = 1}^n {\left( {\log \left| {\left[ {{x_i}} \right]_R^\theta } \right| - \log \frac{{\left| {\left[ {{x_i}} \right]_R^\theta } \right|}}{{\left| U \right|}}} \right) = \frac{1}{{\left| U \right|}} \left| U \right| \log \left| U \right|} = \log \left| U \right| \end{gathered} $$
Entropy Measurement for Interval-Valued Information Systems
-
摘要: 不确定性度量是粗糙集理论的一个主要研究问题,其中熵度量受到学者们的广泛关注。然而,迄今为止,区间值信息系统的香农熵度量研究较少,尤其缺乏满足单调性的香农熵度量。为此,该文首先给出了一种由覆盖导出划分的方法,并证明了覆盖越细,由其导出的划分越细,从而可用划分熵对区间值信息系统的不确定性进行度量;其次,分别构造了区间值信息系统的香农熵度量和补熵(粒度)度量,并证明了其单调性和有界性。最后,分析了香农熵和补熵的关系。Abstract: Uncertainty measurement is one of the major research problems in rough set theory, and the entropy measure has caught many attentions. However, there is still less research about Shannon entropy measure with monotonicity for interval-valued information systems. For this purpose, firstly, this paper proposes a method of inducing a partition from a given covering and proves that the finer the covering, the finer the partition derived from it, so that partition entropy can be used to measure the uncertainty of interval-valued information system. Secondly, the Shannon entropy measure and the co-entropy (granularity) measure for interval-valued information systems are constructed respectively, and their monotonicity and boundedness are proved. At last, the relationship between Shannon entropy and co-entropy is analyzed.
-
Key words:
- co-entropy /
- interval-valued information system /
- Shannon entropy /
- uncertainty measure
-
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356. doi: 10.1007/BF01001956 [2] SHANNON C E. The mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3-4): 373-423. [3] 苗夺谦, 王珏. 粗糙集理论中概念与运算的信息表示[J]. 软件学报, 1999, 10(2): 113-116. MIAO Duo-qian, WANG Jue. An information representation of the concepts and operations in rough set theory[J]. Journal of Software, 1999, 10(2): 113-116. [4] 苗夺谦, 王珏. 粗糙集理论中知识粗糙性与信息熵关系的讨论[J]. 模式识别与人工智能, 1998, 11(1): 34-40. MIAO Duo-qian, WANG Jue. On the relationships between information entropy and roughness of knowledge in rough set theory[J]. Pattern Recognition and Artificial Intelligence, 1998, 11(1): 34-40. [5] WIERMAN M J. Measuring uncertainty in rough set theory[J]. International Journal of General Systems, 1999, 28: 283-297. doi: 10.1080/03081079908935239 [6] DUNTSCH I, GEDIGA G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998, 106: 109-137. doi: 10.1016/S0004-3702(98)00091-5 [7] BEAUBOUEF T, PETRY F E, ARORA G. Information-theoretic measures of uncertainty for rough sets and rough relational databases[J]. Information Sciences, 1998, 109: 185-195. doi: 10.1016/S0020-0255(98)00019-X [8] LIANG Ji-ye, CHIN K S, DANG Chuang-yin, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2002, 31(4): 331-342. doi: 10.1080/0308107021000013635 [9] LIANG Ji-ye, SHI Zhong-zhi. The information entropy, rough entropy and knowledge granulation in rough set theory[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004, 12(1): 37-46. doi: 10.1142/S0218488504002631 [10] BIANUCCI D, CATTANEO G, CIUCCI D. Entropy and co-entropy of partitions and coverings with application to roughness theory[J]. Granular Computing: At the Junction of Rough Sets and Fuzzy Sets, 2008, 224: 55-77. [11] WANG Hong, YUE Hong-bo. Entropy measures and granularity measures for interval and set-valued information systems[J]. Soft Comput, 2016, 20: 3489-3495. doi: 10.1007/s00500-015-1954-4 [12] DAI Jian-hua, WANG Wen-tao, MI Ju-sheng. Uncertainty measurement for interval-valued information systems[J]. Information Sciences, 2013, 251: 63-78. doi: 10.1016/j.ins.2013.06.047 [13] DAI Jian-hua, WEI Bing-jie, ZHANG Xiao-hong, et al. Uncertainty measurement for incomplete interval-valued information systems based on α-weak similarity[J]. Knowledge-Based Systems, 2017, 136: 159-171. doi: 10.1016/j.knosys.2017.09.009 [14] XIE Ning-xin, LIU Meng, LI Zhao-wen, et al. New measures of uncertainty for an interval-valued information system[J]. Information Sciences, 2019, 470: 156-174. doi: 10.1016/j.ins.2018.08.047 [15] ZAKOWSKI W. Approximations in the space (U,Π)[J]. Demonstratio Mathematica, 1983, 16: 761-769. [16] FAN Nian-bai, HU Gong-zhu, LIU Hui. Study of definable subsets in covering approximation spaces of rough sets[C]//Proceedings of 2011 IEEE International Conference on Information Reuse and Integration. [S.l.]: IEEE, 2011: 21-24. [17] DAI Jian-hua, HUANG De-biao, SU Hua-shi, et al. Uncertainty measurement for covering rough sets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2014, 22(2): 217-234. doi: 10.1142/S021848851450010X
计量
- 文章访问数: 5473
- HTML全文浏览量: 1967
- PDF下载量: 39
- 被引次数: 0