基于搜索偏好知识的复杂多模差分进化算法

Complex Multimodal Differential Evolution Algorithm Based on Search Preference Knowledge

  • 摘要: 针对复杂多模优化问题,提出一种基于搜索偏好知识的差分进化算法PKLSHADE。PKLSHADE将先验搜索偏好知识注入到种群的进化过程,在不同的进化阶段对种群的多样性和集约性区分考虑,进化早期重视差分扰动以增强算法的全局开发能力,进化后期更多围绕当前最优解进行局部精细搜索。同时,基于搜索偏好知识的变异策略能够实现差分进化算法全局开发和局部搜索的自适应平滑过渡,避免两搜索阶段的硬切换。在CEC2017复杂混合多模函数上的实验结果及统计分析表明,PKLSHADE在最优解的精度、算法的稳定性等方面均优于LSHADE、EBLSHADE、jSO及AMECoDEs等近年来的优秀差分进化算法。

     

    Abstract: A differential evolutionary (DE) algorithm based on search preference knowledge — PKLSHADE (i.e. preference-knowledge-based LSHADE) is proposed for complex multimodal optimization. PKLSHADE applies prior search preference knowledge in the evolutionary process of the population and differentiates the diversity and convergence of the population at different evolutionary stages, i.e., the importance is attached to the perturbation in the early stages of evolution to enhance the global development of the algorithm, and more local searches centering around the current optimal solution are carried out in the later stage. At the same time, the mutation strategy based on search preference knowledge can realize the global development of differential evolutionary algorithm and the smooth adaptive transition of local search to avoid the direct switch of the two search stages. The experimental results on the complex multimodal functions of CEC2017 show that PKLSHADE is superior to recent excellent algorithms such as LSHADE, EBLSHADE, jSO and AMECoDEs in terms of the accuracy of the optimal solution and the stability of the algorithm.

     

/

返回文章
返回