-
人类智能具有对当前环境、社会关系等的认知、记忆及情感理解能力,人工智能作为人类智能的扩展和延伸,能够代替人类进行复杂的高性能计算,并且对人的思维和意识进行模拟。随着科技的发展,人工智能已不能满足日益增长的需求和复杂的应用环境。混合智能作为人类智能和人工智能结合的一种新技术,能够完成更加复杂的任务。人机协同的典型应用有外骨骼机器人、手术机器人、物流机器人、社交机器人等。本文针对医用人机协同智能系统及其临床应用进行了综述及展望。
Human-Robot Collaborative Intelligent System and Its Clinical Applications
-
摘要: 人类智能能够在执行某一任务时做出适应当前环境的决策,并且具有思考能力和情感意识;人工智能能够代替人类进行快速且大批量的高性能计算。然而由于需求的不断增加,提高了环境和任务的复杂性,单凭人类智能或人工智能无法执行复杂任务,人机协同智能系统作为一种基于混合智能的新型技术与系统,能够通过人类与机器交互及协同的混合智能在高动态环境中实现复杂任务,通过协同感知、协同认知和协同控制实现人类和机器的优势互补、扬长避短,是人类智能和人工智能的结合和拓展。该文对国内外现有主流人机协同智能系统及其理论进行了总结,并对典型人机协同智能系统在临床应用方面进行了分析,最后对人机协同智能系统的研究趋势进行了展望。Abstract: Human intelligence can make adaptive decisions according to current environment when performing tasks, and is capable of thinking and emotional awareness. Artificial intelligence can make high performance computing instead of humans. However, increasing demand makes environments and tasks become more complicated, thus human intelligence or artificial intelligence alone is unable to perform complex tasks. Human-robot collaboration intelligence system is a novel technology based on hybrid intelligence, which can perform complex tasks in high-dynamic environment. It is the extension and expansion of human behavior and intelligence to realize the complementary advantages. In this paper, the main human - robot collaborative intelligence system and its theory are summarized. And then, the clinical applications of typical human - robot collaborative intelligence system is analyzed. Finally, this paper prospects the research trends of human-machine collaborative intelligence systems.
-
[1] CAPEK K, CAPEK J. The insect play[M]. New York: Oxford University Press, 1963. [2] STEFANOS N, JULIE A S. Human-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy[C]//2013 8th ACM/IEEE International Conference on Human-Robot Interaction. [S.l.]: IEEE, 2013: 33-40. [3] 龚朱, 杨爱华, 赵惠康. 外科手术机器人发展及其应用[J]. 中国医学教育技术, 2014, 28(3): 273-277. GONG Zhu, YANG Ai-hua, ZHAO Hui-kang. Development and application of surgical robots[J]. Chinese Medical Education Technology, 2014, 28(3): 273-277. [4] 郭跃华, 周汉新. 手术机器人的发展与现状[J]. 中华外科杂志, 2005, 43(1): 64-66. doi: 10.3760/j:issn:0529-5815.2005.01.019 GUO Yue-hua, ZHOU Han-xin. The development and status of surgical robots[J]. Chinese Journal of Surgery, 2005, 43(1): 64-66. doi: 10.3760/j:issn:0529-5815.2005.01.019 [5] PRANSKY J. The pransky interview: Russ Angold, co-founder and president of EksoTM Labs[J]. Industrial Robot, 2014, 41(4): 329-334. doi: 10.1108/IR-05-2014-0334 [6] TEFERTILLER C, HAYS K, JONES J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury[J]. Topics in Spinal Cord Injury Rehabilitation, 2018, 24(1): 78-85. doi: 10.1310/sci17-00014 [7] SHAFER S A, WHITTAKER W L. Development of an integrated mobile robot system at Carnegie Mellon University: June 1988 annual report[J]. Technical Report Carnegie Mellon University, 1989, 30(3): 241-249. [8] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Jounral of Physical Medicine & Rehabilitation, 2012, 91(11): 911-921. [9] REWALK ROBOTICS. The ReStoreTM soft exo-suit: A revolution in post-stroke gait training[EB/OL]. [2020-1-10]. https://rewalk.com/restore-exo-suit/. [10] FARAN S, EINAV O, YOELI D, et al. Reo assessment to guide the ReoGo therapy: Reliability and validity of novel robotic scores[C]//2009 Virtual Rehabilitation International Conference. Haifa, Israel: [s.n.], 2009: 209. [11] SASO J, COLOMBO G, KELLER T, et al. Robotic orthosis lokomat: A rehabilitation and research tool[J]. Neuromodulation Technology at the Neural Interface, 2008, 6(2): 108-115. [12] SCZESNY-KAISER M, HOFFKEN O, AACH M, et al. HaloR exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12(1): 68. doi: 10.1186/s12984-015-0058-9 [13] REX B. Robot for rehabilitation: exercising, walking and standing[EB/OL]. [2020-01-20]. http://www.rexbionics.com/products/rex-p/. [14] GANCET J, LLZKOVITZ M, MOTARD E, et al. Mindwalker: Going one step further with assistive lower limbs exoskeleton for sci condition subjects[C]//IEEE RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma, Italy: IEEE, 2012: 1794-1800. [15] DESTARAC M A, GARCIA C E, GARCIA J, et al. ORTE: Robot for upper limb rehabilitation[J]. Latin America Transactions IEEE, 2018, 16(6): 1638-1643. doi: 10.1109/TLA.2018.8444160 [16] SCHIELE A, HIRZINGER G, SCHIELE A, et al. A new generation of ergonomic exoskeletons-the high-performance X-Arm-2 for space robotics telepresence[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. San Francisco, USA: IEEE, 2011: 2158-2165. [17] JAN B, KATJA M, DIRK L, et al. SPEXOR: Spinal Exoskeletal robot for low back pain prevention and vocational reintegration. Wearable robotics: Challenges and Trends[J]. Springer, Biosystems & Biorobotics, 2017, 16: 311-315. [18] 陈峰. 可穿戴型助力机器人技术研究[D]. 合肥: 中国科学技术大学, 2006. CHEN Feng. Research on the wearable power assist robot[D]. Hefei: University of Science and Technology of China, 2006 [19] 张杰. 脑卒中瘫痪下肢外骨骼康复机器人的研究[D]. 杭州: 浙江大学, 2007. ZHANG Jie. Study on the exoskeleton leg for training paraplegic patients[D]. Hangzhou: Zhejiang University, 2007. [20] 刘笃信. 下肢外骨骼机器人多模融合控制策略研究[D]. 深圳: 中国科学院深圳先进技术研究院, 2018. LIU Du-xin. Research on multimodal fusion-based control strategy for lower-limb exoskeleton robot[D]. Shenzhen: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 2018. [21] RUI H, HONG C, HONGLIANG G, et al. Hierarchical interactive learning for a human-powered augmentation lower exoskeleton[C]//IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 257-263. [22] ZHAN L, HONG C, HONG L G, et al. Compliant training control of ankle joint by exoskeleton with human emg-torque interface[J]. Assembly Automation, 2017, 37(3): 349-355. doi: 10.1108/AA-12-2016-161 [23] HUU-TOAN T, HONG C, XICHUAN L, et al. The relationship between physical human-Exoskeleton interaction and dynamic factors: Using a learning approach for control applications[J]. Science China Information Sciences, 2014, 57(12): 1-13. [24] YILIN W, HONG C, LEI H. c2AIDER: A cognitive cloud Exoskeleton system and its applications[J]. Cognitive Computation and Systems, 2019, 1(2): 33-39. doi: 10.1049/ccs.2018.0012 [25] 邱静, 高龙, 卢军. 实时EEG脑力负荷预测研究[J]. 人类工效学, 2015(3): 10-13. QIU Jing, GAO Long, LU Jun. Real-time EEG analysis for mental workload with a wireless EEG headset[J]. Ergonomics, 2015(3): 10-13. [26] PADOIS V, FOURQUET J Y, CHIRON P. Kinematic and dynamic model-based control of wheeled mobile manipulators: A unified framework for reactive approaches[J]. Robotica, 2007, 25(2): 157-173. doi: 10.1017/S0263574707003360 [27] ASENSIO J R, MONTANO L. A kinematic and dynamic model-based motion controller for mobile robots[C]//15th IFAC World Congress. Barcelona, Spain: IFAC, 2002, 35(1): 427-432. [28] BARBARESCHI G, RICHARDS R, THORNTON M, et al. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human[C]//IEEE Engineering in Medicine Biology Society. Milan, Italy: 2015: 6728-6731. [29] HYON S H, MORIMOTO J, MATSUBARA T, et al. XoR: Hybrid drive exoskeleton robot that can balance[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 3975-3981. [30] ZELIK K E, KUO A D. Human walking isn’t all hard work: Evidence of soft tissue contributions to energy dissipation and return[J]. Journal of Experimental Biology, 2010, 213: 4257-4264. doi: 10.1242/jeb.044297 [31] ZELIK K E, HUANG T W P, ADAMCZYK P G, et al. The role of series ankle elasticity in bipedal walking[J]. Journal of Theoretical Biology, 2014, 346: 75-85. doi: 10.1016/j.jtbi.2013.12.014 [32] COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature Letter, 2015, 522(7555): 212-215. doi: 10.1038/nature14288 [33] TSAROUCHI P, MAKRIS S, CHRYSSOLOURIS G. Human - robot interaction review and challenges on task planning and programming[J]. International Journal of Computer Integrated Manufacturing, 2016, 29(8): 1-16. [34] 彭亮, 侯增广, 王晨, 等. 康复辅助机器人及其物理人机交互方法[J]. 自动化学报, 2018, 44(11): 2000-2010. PENG Liang, HOU Zeng-guang, WANG Chen, et al. Physical interaction methods for rehabilitation and assistive robots[J]. ACTA Automatica Sinica, 2018, 44(11): 2000-2010. [35] REN L, OMISORE O M, HAN S, et al. A master-slave control system with workspaces isomerism for teleoperation of a snake robot[C]//International Conference of the IEEE Engineering in Medicine & Biology Society. Jeju Island: IEEE, 2017: 4343-4346. [36] ZHAO D, DA L. Clinical training technology for vascular interventional surgery robot system based on master-slave expansion[C]//IEEE International Conference on Mechatronics and Automation. Chengdu, China: IEEE, 2012: 604-610. [37] HEYER C. Human-robot interaction and future industrial robotics applications[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Taiwan, China: IEEE, 2010: 4749-4754. [38] PETERNEL L, TSAGARAKIS N, AJOUDANI A. Towards multi-modal intention interfaces for human-robot co-manipulation[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Daejeon: IEEE, 2016: 2663-2669. [39] CHAOBIN Z, RUI H, HONG C. Adaptive gait planning for walking assistance lower limb exoskeletons in slope scenarios[C]//IEEE International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 5083-5089. [40] CINAR E, SAHIN F. New classification techniques for electroencephalo gram (EEG) signals and a real-time EEG control of a robot[J]. Neural Computing and Applications, 2013, 22(1): 29-39. doi: 10.1007/s00521-011-0744-x [41] KREPKI R, BLANKERTZ B, CURIO G, et al. The berlin brain-computer interface (BBCI): Towards a new communication channel for online control in gaming applications[J]. Multimedia Tools and Applications, 2007, 33(1): 73-90. doi: 10.1007/s11042-006-0094-3 [42] LEBIERE C, JENTSCH F, OSOSKY S. Cognitive models of decision making processes for human-robot interaction[C]//International Conference on Virtual, Augmented and Mixed Reality. Nevada, USA: [s.n.], 2013: 285-294. [43] MIŠKOVIĆ N, BIBULI M, BIRK A, et al. CADDY-cognitive autonomous diving buddy: Two years of underwater human-robot interaction[J]. Marine Technology Society Journal, 2016, 50(4): 54-66. doi: 10.4031/MTSJ.50.4.11 [44] VIDAL J J. Real-time detection of brain events in EEG[J]. Proceedings of the IEEE, 1977, 65(5): 633-641. doi: 10.1109/PROC.1977.10542 [45] DECETY J, PERANI D, JEANNEROD M. Mapping motor representations with positron emission tomography[J]. Nature, 1994, 371(6498): 600-602. doi: 10.1038/371600a0 [46] ZANDER T O, GAERTNER M, KOTHE C, et al. Combining eye gaze input with a brain-computer interface for touchless human-computer interaction[J]. International Journal of Human-Computer Interaction, 2011, 27(1): 38-51. [47] KENNEDY P R, BAKAY R A. Restoration of neural output from a paralyzed patient by a direct brain connection[J]. Neuroreport, 1998, 9: 1707-1711. doi: 10.1097/00001756-199806010-00007 [48] HOCHBERG L R, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with Tetraplegia using a neutrally controlled robotic arm[J]. Nature, 2015, 485(7398): 372-375. [49] FLESHER S N, COLLINGER J L, FOLDES S T, et al. Intracortical microstimulation of human somatosensory cortex[J]. Science Translational Medicine, 2016, 8(361): 10.1126/scitranslmed.aaf8083. doi: 10.1126/scitranslmed.aaf8083 [50] LEEB R, SAGHA H, CHAVARRIAGA R, et al. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities[J]. Journal of Neural Engineering, 2011, 8(2): 025011. doi: 10.1088/1741-2560/8/2/025011 [51] BOUTON C E, SHAIKHOUNI A, ANNETTA N V, et al. Restoring cortical control of functional movement in a human with quadriplegia[J]. Nature, 2016(533): 247-250. [52] HOCHBERG L R, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012(485): 372-375. [53] MURALI K, MURALINDRAN M. EEG-based brain-machine interface (BMI) for controlling mobile robots: the trend of prior studies[J]. International Journal of Computer Science and Electronics Engineering, 2015, 3(2): 159-165. [54] MATSUYAMA H, ASAMA H, OTAKE M. Design of differential near-infrared spectroscopy based brain machine interface[C]//The 18th IEEE International Symposium on Robot and Human Interactive Communication. Toyama, Japan: IEEE, 2009: 775-780. [55] VIDAL J J. Toward direct brain-computer communication[J]. Annual Review of Biophysics and Bioengineering, 1973, 2: 157-180. doi: 10.1146/annurev.bb.02.060173.001105 [56] MILLER L E, ZIMMERMANN A K, HERBERT W G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis[J]. Medical Devices, 2016, 9: 455-466. [57] LOUIE D R, ENG J J, LAM T, et al. Gait speed using powered robotic exoskeletons after spinal cord injury: A systematic review and correlational study[J]. Journal of Neuroengineering & Rehabilitation, 2015, 12(1): 82. [58] UEBA T, HAMADA O, OGATA T, et al. Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit[J]. Neurologia Medico-Chirurgica, 2013, 53(5): 287-290. doi: 10.2176/nmc.53.287 [59] CALABRÒ R S, NARO A, RUSSO M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial[J]. Journal of Neuroengineering & Rehabilitation, 2018, 15(1): 35. [60] SCHREUDER H W R, VERHEIJEN R. Robotic Surgery[J]. BJOG: An International Journal of Obstetrics and Gynaecology, 2009, 116(2): 198-213. doi: 10.1111/j.1471-0528.2008.02038.x [61] 戚仕涛, 刘铁兵. 外科手术机器人系统及其临床应用[J]. 中国医疗设备, 2011, 26(6): 56-59. doi: 10.3969/j.issn.1674-1633.2011.06.019 QI Shi-tao, LIU Tie-bing. Surgical robot system and its clinical applications[J]. China Medical Equipment, 2011, 26(6): 56-59. doi: 10.3969/j.issn.1674-1633.2011.06.019 [62] IBRAHIM A, LISELOTTE M, NICOLAI M, et al. Robotic surgery in gynecology[J]. Der Gynäkologe, 2016, 17(4): 224-232. [63] GUTT C N, ONIU T, MEHRABI A, et al. Robot-assisted abdominal surgery[J]. British Journal of Surgery, 2004, 91(11): 1390-1397. doi: 10.1002/bjs.4700 [64] MORINO M, PELLEGRINO L, GIACCONE C, et al. Randomized clinical trial of robot‐assisted versus laparoscopic Nissen fundoplication[J]. British Journal of Surgery, 2006, 93(5): 553-558. doi: 10.1002/bjs.5325 [65] METTLER L, IBRAHIM M, JONAT W. One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder aesop) in gynaecological endoscopic surgery[J]. Human Reproduction, 1998, 13(10): 2748-2750. doi: 10.1093/humrep/13.10.2748 [66] ISHIKAWA N, WATANABE G. Robot-assisted coronary artery bypass grafting[J]. Kyobu Geka the Japanese Journal of Thoracic Surgery, 2016, 69(8): 589-593. [67] CHAN J Y K, WONG E W Y, TSANG R K, et al. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery[J]. European Archives of Oto-Rhino-Laryngology, 2017, 274(11): 3993-3996. doi: 10.1007/s00405-017-4729-y