-
抗体在重大疾病的预防、诊断与治疗中起着至关重要的作用。抗体相关基础与应用研究,既具有重大科学意义,又与国民经济和社会发展息息相关。科学家对抗体的研究已先后7次获得了诺贝尔奖。例如,1901年,首枚诺贝尔生理学与医学奖,授予了德国科学家冯·贝林,表彰他开创了血清疗法,尤其是在治疗急性呼吸道传染病白喉中的成功应用。当前,新冠肺炎肆虐全球,康复患者血浆疗法临危受命,其实质是冯·贝林开创的抗体过继被动免疫疗法。又比如,已广泛使用的新冠病毒IgM/IgG抗体胶体金法快速检测试剂盒,临床试验中的托珠单抗治疗新冠肺炎重症患者,均依赖于1984年荣获诺贝尔奖的杂交瘤单克隆抗体技术。
由于抗体既是生物医学科学研究不可或缺的工具,又是疾病防治的利器,所以抗体产业迅速发展壮大。尤其是抗体药物,已经给人类健康与生物医药产业带来了革命性变革,不少化学小分子不能作用的蛋白成为抗体治疗的高效药靶。据统计,美国FDA批准上市的抗体药迄今已多达92种,适应症范围覆盖了各类肿瘤、多种自身免疫性疾病、眼科及一些罕见病等多个方面,年销售额约1000亿美元。近十年来,全球最畅销药物前十强中,抗体药物占据半壁以上江山,近年更是屡拔头筹。例如,治疗多种自身免疫病的阿达木单抗,单个品种的年销售额就已接近200亿美元;淘选该单抗所用到的噬菌体展示技术也获得2018年诺贝尔奖。
目前,全球正在进行I、II期临床试验的抗体药物超过550种,另有79种已进入开发的最后阶段,再创新高[1]。但是,即便是人源或人源化抗体,即便已进入到临床试验阶段,最终能够成功开发上市的只有15%左右[2]。如何提高抗体开发的成功率,降低开发后期失败带来的人力、物力、财力的浪费及时间上的耽搁是抗体产业界想要解决的重大难题。由于二代测序与噬菌体展示抗体技术的广泛应用[3-5],全球研究机构与制药公司临床前阶段的候选抗体数以万计。只有从中找出具有理想药效、安全性和药代动力学特性,并且具有理想的理化特性,满足生产、制剂工艺各项技术要求的先导抗体,才能提高后期开发的成功率。上述过程就是抗体的可开发性(developability)评估[6]。目前,化学小分子的成药性可用简单成熟的“里宾斯基5规则”来快速评估[7],但抗体大分子还没有类似评价标准。因此,如何全面、合理、快速地对海量候选抗体进行可开发性评估,是抗体药物开发领域亟待解决的关键科技问题。本文结合国内外抗体可开发性评估的研究现状,聚焦抗体生物信息学尤其是可开发性预测研究的进展,总结存在的问题,提出可能的解决方案。
Progress in Research on Evaluation of Developability of Therapeutic Antibody
-
摘要: 抗体在疾病诊防治中起着关键作用。其中,治疗性抗体已形成千亿美元的市场,适应症涵盖肿瘤、自身免疫及感染性疾病等,但也存在研发成本高、成功率低的困境。如何全面、合理、快速地对海量候选抗体进行可开发性评估,降低研发后期失败率,是治疗性抗体开发领域亟待解决的关键科技问题。该文综述了抗体可开发性评估实验研究及相关生物信息学研究的进展,总结了现有研究存在的问题,有助于相关领域学者未来研究的开展。Abstract: Antibody plays a key role in disease prevention, diagnosis, and treatment. Therapeutic antibodies have a market over 100 billion dollars with indications for various diseases such as cancers, autoimmune diseases, and infectious diseases. However, the trade suffers from high costs and low success rate. To assess the developability of thousands or even millions of antibody candidates comprehensively, reasonably, and quickly so as to decrease the late stage failure of antibody development is the key problem need to be solved in the field of therapeutic antibody development. This paper reviewed the advances in experimental and bioinformatics studies on evaluation of the developability of therapeutic antibodies. The problems of existing researches were also summarized. Therefore, it would benefit the relevant scholars in their further studies.
-
Key words:
- bioinformatics /
- developability /
- machine learning /
- therapeutic antibody
-
[1] KAPLON H, MURALIDHARAN M, SCHNEIDER Z, et al. Antibodies to watch in 2020[J]. MAbs, 2020, 12(1): 1703531. doi: 10.1080/19420862.2019.1703531 [2] CARTER P J, LAZAR G A. Next generation antibody drugs: Pursuit of the 'high-hanging fruit'[J]. Nature Reviews Drug Discovery, 2018, 17(3): 197-223. doi: 10.1038/nrd.2017.227 [3] GEORGIOU G, IPPOLITO G C, BEAUSANG J, et al. The promise and challenge of high-throughput sequencing of the antibody repertoire[J]. Nature Biotechnology, 2014, 32(2): 158-168. doi: 10.1038/nbt.2782 [4] SOTO C, BOMBARDI R G, BRANCHIZIO A, et al. High frequency of shared clonotypes in human B cell receptor repertoires[J]. Nature, 2019, 566(7744): 398-402. doi: 10.1038/s41586-019-0934-8 [5] WINTER G. Harnessing evolution to make medicines (nobel lecture)[J]. Angewandte Chemie International Edition, 2019, 58(41): 14438-14445. doi: 10.1002/anie.201909343 [6] XU Ying-da, WANG Dong-dong, MASON B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies[J]. MAbs, 2019, 11(2): 239-264. doi: 10.1080/19420862.2018.1553476 [7] LIPINSKI C A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions[J]. Advanced Drug Delivery Reviews, 2016, 101: 34-41. doi: 10.1016/j.addr.2016.04.029 [8] ELGUNDI Z, RESLAN M, CRUZ E, et al. The state-of-play and future of antibody therapeutics[J]. Advanced Drug Delivery Reviews, 2017, 122: 2-19. doi: 10.1016/j.addr.2016.11.004 [9] BAILLY M, MIECZKOWSKI C, JUAN V, et al. Predicting antibody developability profiles through early stage discovery screening[J]. MAbs, 2020, 12(1): 1743053. doi: 10.1080/19420862.2020.1743053 [10] JAIN T, SUN Ting-wan, DURAND S, et al. Biophysical properties of the clinical-stage antibody landscape[J]. PNAS, 2017, 114(5): 944-949. doi: 10.1073/pnas.1616408114 [11] LEFRANC M P, LEFRANC G. IMGT® and 30 years of immunoinformatics insight in antibody V and C domain structure and function[J]. Antibodies, 2019, 8(2): E29. doi: 10.3390/antib8020029 [12] ZUO Jing, LI Jian, ZHANG Rong-xin, et al. Institute collection and analysis of Nanobodies (iCAN): A comprehensive database and analysis platform for nanobodies[J]. BMC Genomics, 2017, 18(1): 797. doi: 10.1186/s12864-017-4204-6 [13] RAYBOULD M I J, MARKS C, LEWIS A P, et al. Thera-SAbDab: The therapeutic structural antibody database[J]. Nucleic Acids Research, 2020, 48(D1): D383-D388. doi: 10.1093/nar/gkz827 [14] NORMAN R A, AMBROSETTI F, BONVIN A M J J, et al. Computational approaches to therapeutic antibody design: Established methods and emerging trends[J]. Briefings in Bioinformatics, 2020, 21(5): 1549-1567. doi: 10.1093/bib/bbz095 [15] CORRIE B D, MARTHANDAN N, ZIMONJA B, et al. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories[J]. Immunological Reviews, 2018, 284(1): 24-41. doi: 10.1111/imr.12666 [16] FERDOUS S, ACR M. AbDb: Antibody structure database-a database of PDB-derived antibody structures[J]. Database, 2018, 2018: 1-9. [17] SIRIN S, APGAR J R, BENNETT E M, et al. AB-Bind: Antibody binding mutational database for computational affinity predictions[J]. Protein Science, 2016, 25(2): 393-409. doi: 10.1002/pro.2829 [18] LIMA W C, GASTEIGER E, MARCATILI P, et al. The ABCD database: A repository for chemically defined antibodies[J]. Nucleic Acids Research, 2020, 48(D1): 261-264. doi: 10.1093/nar/gkz714 [19] SWINDELLS M B, PORTER C T, COUCH M, et al. abYsis: Integrated antibody sequence and structure management, analysis, and prediction[J]. Journal of Molecular Biology, 2017, 429(3): 356-364. doi: 10.1016/j.jmb.2016.08.019 [20] DUNBAR J, KRAWCZYK K, LEEM J, et al. SAbDab: The structural antibody database[J]. Nucleic Acids Research, 2014, 42(D1): 1140-1146. doi: 10.1093/nar/gkt1043 [21] LAUER T M, AGRAWAL N J, CHENNAMSETTY N, et al. Developability index: A rapid in silico tool for the screening of antibody aggregation propensity[J]. Journal of Pharmaceutical Sciences, 2012, 101(1): 102-115. doi: 10.1002/jps.22758 [22] OBREZANOVA O, ARNELL A, CUESTA R G D L, et al. Aggregation risk prediction for antibodies and its application to biotherapeutic development[J]. MAbs, 2015, 7(2): 352-363. doi: 10.1080/19420862.2015.1007828 [23] JAIN T, BOLAND T, LILOV A, et al. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning[J]. Bioinformatics, 2017, 33(23): 3758-3766. doi: 10.1093/bioinformatics/btx519 [24] DZISOO A M, HE Bi-fang, KARIKARI R, et al. CISI: A tool for predicting cross-interaction or self-interaction of monoclonal antibodies using sequences[J]. Interdisciplinary Sciences, 2019, 11(4): 691-697. [25] DZISOO A M, KANG Juan-juan, YAO Peng-cheng, et al. SSH: A tool for predicting hydrophobic interaction of monoclonal antibodies using sequences[J]. BioMed Research International, 2020, 2020(2): 1-6. [26] RAYBOULD M I J, MARKS C, KRAWCZYK K, et al. Five computational developability guidelines for therapeutic antibody profiling[J]. PNAS, 2019, 116(10): 4025-4030. doi: 10.1073/pnas.1810576116 [27] NING Lin, ABAGNA H B, JIANG Qian-hu, et al. Development and application of therapeutic antibodies against COVID-19[J]. International Journal of Biological Sciences, 2021, 17(6): 1486-1497.
计量
- 文章访问数: 8348
- HTML全文浏览量: 3155
- PDF下载量: 153
- 被引次数: 0