链路预测中的局部相似性指标

Local Similarity Indices in Link Prediction

  • 摘要: 链路预测是网络科学中一个重要且充满挑战的研究方向,其在社交网络中的朋友推荐、生物实验中的关系发现、搜索引擎中的链接导航以及电商平台中的商品推荐等领域发挥着不可忽视的作用。链路预测研究兴起的20余年里,各类链路预测算法层出不穷,其中局部相似性指标以其简洁性、可解释性、较低的运算时间、灵活的可扩展性以及有竞争力的预测准确度等优势迅速在多个相关研究领域和实际应用场景中被广泛应用。这些指标大多基于同质性、聚集性、三角闭包等理论在2阶邻居分析框架中提出。但最近10年,局部社团范式理论的提出、赫布律的应用以及针对2阶框架合理性的争议等一系列重要工作的出现极大推动了局部相似性指标的深入研究和发展。该文旨在针对这些新的理论和争议进行梳理和讨论。

     

    Abstract: Link prediction is a significant and challenging task in network science, which plays an important role in friend recommendations, the discovery of biological interactions, link navigation, and product recommendations. Since the rise of link prediction, many methods have been proposed. Due to the simplicity, interpretability, high efficiency, scalability, and satisfactory performance, local similarity indices are widely used in various research fields and applications. Under the 2-hop-based neighborhood analytical framework, most of the indices are proposed based on the network organization mechanisms including homophily, clustering and triadic closure. In the last decade, the emergence of local community paradigm, Hebb theory and new arguments about the rationality of the 2-hop-based framework has greatly promoted the development of local similarity indices. This paper aims at sorting out and discussing these new findings.

     

/

返回文章
返回