-
生化检测分析在很多领域起重要作用,如何灵敏快速地针对某些低浓度物质进行定性或定量检测的需求日益增加。现有的高精度检测设备主要为固定的台式设备,其结构复杂、价格昂贵、需要专业人员操作等特性限制了其使用范围。随着微纳制造技术的迅猛发展,微流控检测平台为检测系统的小型化及可便携化发展带来了发展空间[1-3]。微流控检测平台相较于大型检测系统,具有样本消耗量小、成本低、芯片即抛即用、分析时间短等更具竞争性的优势[4]。然而,其在减小体积和样本量的同时,给检测的灵敏度带来了挑战。为了改善系统的检测灵敏度,微流控富集技术应运而生。该技术通过对样本预处理提高待检成分的浓度,从而提高检测灵敏度,很快成为微流控领域的研究热点之一。
当前,微流控富集技术发展呈现多样化态势,依据待富集物质是否主动参与到富集动态中,可将这些技术分为被动富集技术和主动富集技术。被动富集技术通常使用特殊通道结构设计、过滤辅助结构或具有特异性的捕获元来对目标物进行捕获富集[5-7],应用这类方法最大的优势是富集本身不需要外场的干预,但对样本的物理特性(如目标物的尺寸、刚度、黏弹度等)或免疫特性要足够了解,针对这些特性设计的通道结构往往较为复杂[8-9]。主动富集技术通常需要外场的干预来实现目标物的富集,典型技术有:基于梯度场建立的速度差异富集技术[10-12],主要包括等电位聚焦(isoelectric focusing, IEF)、电场梯度聚焦(electric field gradient focusing, EFGF)、温度梯度聚焦(temperature gradient focusing, TGF)等;基于缓冲介质特性差异实现的边界堆叠富集技术[13-15],主要包括扫描堆积(Sweeping)、等速电泳(isotachophoresis, ITP)和场放大样品堆叠(field amplified sample stacking, FASS)等;介电泳富集技术[16-17]和基于电渗流与电泳合力作用下的电动富集技术。其中,电动富集技术是一种实现相对简单的富集技术,而基于离子浓差极化(ion concentration polarization, ICP)效应的电动富集是目前效率较高的富集方式,其将微米通道由纳米结构串接,而纳米通道是具有离子选择性的,通过合理的电场条件控制,就能在纳米通道一侧的微米通道内形成特定离子的高效富集。ICP现象自首次被文献[18]发现以来,已广泛应用于微流控富集中[19-21]。利用ICP现象的电动富集方式无疑是目前最受欢迎的富集方式之一,但纳米工艺的制作还不具备普适性,这是限制其发展的主要因素。
现有的富集方式各自具有自身的适用领域与应用局限,包括需要掌握目标成分的物化特性、需严格的微纳通道工艺及电极工艺制备条件、需配置特性符合需求的缓冲介质等。而现有的大部分生化检测对象是具有负电荷属性的,如何利用微通道中的流体电动特性在简单的微通道结构中实现电动富集仍然具有较大的研究空间。前期研究表明,在T型微通道内,通过电渗流的诱导可以产生压力驱动流,实现持续稳定的流体进样,而优化的双T型通道结构在实现流体驱动的同时,还具有带电离子富集的潜能[22-23];同时液态金属可以注入微通道中作为微电极用于双T型微流控通道中,降低微通道中电极制作的难度[24]。本文在此基础上对双T型通道内荧光离子和皮质醇适配体的富集特性分别进行了实验研究,发现了皮质醇适配体的新型富集现象,并以此为基础实现了皮质醇的荧光检测。
-
双T型电动富集结构及流体电动控制原理如图1所示,通道中心由液态金属提供形状规则的中心电极,并通过阻挡柱阵列与样本通道耦合接触。通道主体由进样通道(包括两个进样分支)、出样通道(分左右两侧)、过渡腔与富集腔4个部分构成,如图1a所示,芯片的实际制作模型如图1b所示,其中的5个圆形区域为芯片设计的打孔位置,O与O’所示孔位为液态金属注射控制孔位,直径均为2000 μm,A、B、C为样本溶液注入与存储孔位,直径均为4000 μm,芯片呈左右对称结构。
当通道如图1b所示接入直流电源DC后,流体在富集腔、过渡腔和两侧出样通道间产生沿着电场方向的电渗流,使得富集腔中心区域形成负压腔,此时流体可由进样通道吸入负压区域形成持续进样,其流场分布如图1c所示。该流场分布由微通道中的直流电场和层流场共同控制,其控制方程为:
$${\nabla ^2}{ V} = 0$$ (1) $${ E} = - \nabla { V}$$ (2) $${{u}} = - \frac{{{\varepsilon _r}{\varepsilon _0}\zeta }}{\mu }{ E}$$ (3) $$ \rho ({ u} \nabla ){ u} = \nabla [ - {{p}}{ I} + \mu (\nabla { u} + {(\nabla { u})^{\rm{T}}})]{\rm{ + }}{ F} $$ (4) $$\rho \nabla { u} = {{{0}}}$$ (5) 式中,V表示电势;E为由电势差形成的电场强度;ε0为真空中的介电系数;εr为流体的相对介电率;ζ为通道的zeta电势;μ为流体中的动态粘滞度;u为速度矢量;ρ为流体密度;p为压强;I为单位矢量;F为由粘滞度引起的流动阻力。其中,速度u为关键变量,由上述方程组求得,并根据其分布可得到流体的流场分布。同时,当样本溶液中目标成分为带电物质时,其在对流、扩散及电场迁移的共同作用下,会在流体通道中形成速度平衡点,由此形成富集效应。本实验主要研究负电荷物质在该结构中的电动富集性能。
Electrokinetic Enrichment of Substances in Double-T-shape Channel
-
摘要: 微流控检测作为一种新型生化检测平台,具有快速、低成本的检测优势,得到了广泛关注,微流控富集技术对改善微流控检测系统的灵敏度具有重要意义。该文从能实现电动控制样本驱动功能的双T型通道出发,研究了该结构对荧光离子和皮质醇适配体的富集效果,发现了该结构针对不同尺度的物质具有不同的富集效应和富集区域。针对尺寸相对较大的分子类物质,可以在较低的电压下实现局部区域的快速富集,且富集区域远离电极,并利用该富集效应,完成了双T型通道对浓度为0.1 μg/mL的皮质醇的荧光检测。Abstract: Biochemical detection and analysis plays an important role in many fields, and many of the target substances are in low concentrations. Microfluidic detection platform has been developed for its low cost and rapid detection. Microfluidic enrichment is important to improve the sensitivity of microfluidic detection system. This paper studied the enrichment of fluorescent ions and cortisol aptamers using a double-T-shape channel, which could achieve the function of sample driving by electrokinetics. It is found that the structure has different enrichment effect and different enrichment area for different sizes of substances. For those substances with larger size relative to ions, it can be concentrated in a short time under low voltages, and the enrichment region is far away from the microelectrode, which is of benefit to both the sample and the electrode. By using this new enrichment effect, we achieved the detection of cortisol with the concentration of 0.1 μg/mL.
-
Key words:
- electrokinetics /
- electrophoresis /
- electroosmotic flow /
- enrichment rate /
- microfluidic enrichment
-
[1] MYERS F B, LEE L P. Innovations in optical microfluidic technologies for point-of-care diagnostics[J]. Lab on a Chip, 2008, 8(12): 2015-2031. doi: 10.1039/b812343h [2] KARLE M, VASHIST S K, ZENGERLE R, et al. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review[J]. Analytica Chimica Acta, 2016, 929: 1-22. doi: 10.1016/j.aca.2016.04.055 [3] ZHANG Dong-xue, BI Hong-yan, LIU Bao-hong, et al. Detection of pathogenic microorganisms by microfluidics based analytical methods[J]. Analytical Chemistry, 2018, 90(9): 5512-5520. doi: 10.1021/acs.analchem.8b00399 [4] ASIELLO P J, BAEUMNER A J. Miniaturized isothermal nucleic acid amplification, a review[J]. Lab on a Chip, 2011, 11(8): 1420-1430. doi: 10.1039/c0lc00666a [5] FAN Liang-liang, ZHU Xiao-liang, YAN Qing, et al. A passive microfluidic device for continuous microparticle enrichment[J]. Electrophoresis, 2019, 40(6): 1000-1009. doi: 10.1002/elps.201800454 [6] ZHAO De, HE Zhong-yuan, WANG Gang, et al. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment[J]. Journal of Colloid and Interface Science, 2016, 478: 227-235. doi: 10.1016/j.jcis.2016.05.054 [7] SUGIMOTO H, GHOSH D, CHEN S, et al. Immunocapture-LC/MS-based target engagement measurement in tumor plasma membrane[J]. Analytical Chemistry, 2018, 90(22): 13564-13571. doi: 10.1021/acs.analchem.8b03726 [8] HUR S C, HENDERSON M N K, MCCABE E R, et al. Deformability-based cell classification and enrichment using inertial microfluidics[J]. Lab on a Chip, 2011, 11(5): 912-920. doi: 10.1039/c0lc00595a [9] WANG Gong-hao, CRAWFORD K, TURBYFIELD C, et al. Microfluidic cellular enrichment and separation through differences in viscoelastic deformation[J]. Lab on a Chip, 2015, 15(2): 532-540. doi: 10.1039/C4LC01150C [10] HARDCASTLE C D, HARRIS J. Confocal raman microscopy for pH-Gradient preconcentration and quantitative analyte detection in optically trapped phospholipid vesicles[J]. Analytical Chemistry, 2015, 87(15): 7979-7986. doi: 10.1021/acs.analchem.5b01905 [11] YU Si-yang, YAN Chun-fang, HU Xian-qiao, et al. Isoelectric focusing on microfluidic paper-based chips[J]. Analytical and Bioanalycal Chemistry, 2019, 411(21): 5415-5422. doi: 10.1007/s00216-019-02008-5 [12] CAI Yu, NIU Ji-cheng, LIU Yu-qi, et al. Online sample clean-up and enrichment of proteins from salty media with dynamic double gradients on a paper fluidic channel[J]. Analytica Chimica Acta, 2020, 1100: 149-155. doi: 10.1016/j.aca.2019.11.048 [13] YANG Qing, CHEN Bei-bei, HE Man, et al. Sensitive determination of seven triazine herbicide in honey, tomato and environmental water samples by hollow fiber based liquid-liquid microextraction combined with sweeping micellar electrokinetic capillary chromatography[J]. Talanta, 2018, 186: 88-96. doi: 10.1016/j.talanta.2018.04.012 [14] MARCZAK S, SENAPATI S, SLOUKA Z, et al. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis[J]. Biosensors and Bioelectronics, 2016, 86: 840-848. doi: 10.1016/j.bios.2016.07.093 [15] LIU Li-hong, WAN Qian, XU Xiao-yu, et al. Combination of micelle collapse and field-amplified sample stacking in capillary electrophoresis for determination of trimethoprim and sulfamethoxazole in animal-originated food stuffs[J]. Food Chemistry, 2017, 219: 7-12. doi: 10.1016/j.foodchem.2016.09.118 [16] ASBURY C L, VANDEN E G. Trapping of DNA in nonuniform oscillating electric fields[J]. Biophysical Journal, 1998, 74(2): 1024-1030. doi: 10.1016/S0006-3495(98)74027-5 [17] YANG Li-ju, BANADA P P, CHATNI M R, et al. A multifunctional micro-fluid ic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes[J]. Lab on a Chip, 2006, 6(7): 896-905. doi: 10.1039/b607061m [18] PU Qiao-sheng, YUN Jong-sin, TEMKIN H, et al. Ion-enrichment and ion-depletion effect of nanochannel structures[J]. Nano Letters, 2004, 4(6): 1099-1103. doi: 10.1021/nl0494811 [19] GONG Ling-yan, OUYANG Wei, LI Zi-rui, et al. Force fields of charged particles in micro-nanofluidic preconcentration systems[J]. AIP Advances, 2017, 7(12): 125020. doi: 10.1063/1.5008365 [20] SHEN M, YANG H, SIVAGNANAM V, et al. Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: Experiment and modeling[J]. Analytical Chemistry, 2010, 82(24): 9989-9997. doi: 10.1021/ac102149f [21] JIA Ming-jie, KIM T. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices[J]. Analytical Chemistry, 2014, 86(15): 7360-7367. doi: 10.1021/ac500536w [22] JIANG Hai, FAN Na, PENG Bei, et al. Characterization of an induced pressure pumping force for microfluidics[J]. Applied Physics Letters, 2017, 110: 184102. doi: 10.1063/1.4982969 [23] GONG Yan-li, JIANG Hai, BAI Yun-fei, et al. Numeirical studies of electrokinetically controlled concentration of diluted DNA molecules in a T-shaped microchannel[J]. IEEE Access 2020, 8: 5601-5610. [24] GONG Yan-li, PENG Bei, BAI Yun-fei, et al. Fabrication of a novel liquid metal microelectrode in microfluidic chip[J]. Modern Physics Letters B, 2021, 33: 2140005. [25] MARTIN J A, CHAVEZ J L, CHUSHAK Y, et al. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol[J]. Analytical and Bioanalytical Chemistry, 2014, 406(19): 4637-4647. doi: 10.1007/s00216-014-7883-8 [26] ZHU Chang-feng, ZENG Zhi-yuan, LI Hai, et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules[J]. Journal of the American Chemistry Society, 2013, 135(16): 5998-6001. doi: 10.1021/ja4019572