基于复杂网络控制理论的肿瘤关键基因预测研究

Predicting the Critical Tumor Genes Based on Complex Network Control Theory

  • 摘要: 复杂网络控制能够捕获整个网络的状态,使得从海量的蛋白质相互作用数据中找到潜在的肿瘤致病基因成为可能。该文利用复杂网络控制理论探究肿瘤关键基因,对5种癌症相关的蛋白质–蛋白质相互作用网络,通过网络最小控制集方法,选取始终处于最小控制集(minimum dominating set, MDS)的基因作为候选关键基因。利用肿瘤相关的生物通路数据和已被证实的肿瘤基因数据,采用富集分析证明了该方法的有效性。构建网络综合中心性指标,对候选关键基因进行排序。进而针对不同的癌症类型,挑选排在前面的候选基因(非已知重要基因集的基因)作为最终的预测基因,基于网络结构和体细胞突变数据分析,对其作为生物标志物的有效性进行验证。该研究在一定程度上为复杂网络控制理论在生物医学中的应用提供了思路。

     

    Abstract: Network control theory can capture the state of the whole network, which makes it possible to find potential tumor-causing genes from massive complicated protein-protein interaction data. To explore the key genes of tumors, complex network control theory is applied in this paper to analyze the protein-protein interaction networks with five different kinds of cancers. We mine the minimum dominating set (MDS) of the network and select the genes that always belong to the MDS as the candidate key genes. Using the tumor related pathways and essential tumor gene sets, we find that the candidate key genes are clustered in these gene sets, which indicate the effectiveness of the methods based on MDS. In addition, a comprehensive centrality method is proposed to rank the candidate genes with this method, and then the top ranked genes are selected as the candidate biomarkers. Furthermore, we evaluate the probability of top ranked genes being biomarkers according to the network structural analysis and the enrichment of the somatic mutation. In summary, this study may shed light on the application of complex network control theory in biomedicine.

     

/

返回文章
返回