-
复杂网络理论描述了真实世界事物之间的普遍联系,而多层网络则描述了复杂网络或复杂系统之间的联系。多层网络在现实世界中有着广泛的应用[1-2],如因特网和电力网络之间因互相依赖而组成的多层网络[3-4];一个生物细胞可以看成是代谢网络,蛋白质相互作用网络和基因转录网络的相互依赖而形成的多层网络[5]。这些联系在保证每个复杂系统正常运行的同时,也给其带来了系统性风险,如重大停电事故与大范围的通信中断[3,6]、严重的交通瘫痪[7-8]等。负责电力传输与分配的电力网络依赖于信息传输网络提供监控和调度等方面的支持,同时,信息传输网络也依赖于电力网络提供电力保障[3,9]。类似地,电力网络和铁路网络也存在着双向的依赖关系,电力网络的故障会影响铁路交通的正常运转,而铁路的非正常运转又会影响发电站燃料和物资的供应。因此,研究复杂系统的鲁棒性,需要考虑它们之间的相互依赖性,并基于这种依赖性对复杂系统进行分析和建模,以了解这种相互依赖性导致系统大规模瘫痪的发生机理,从而为减少和干预级联失效提供预防、应急和控制措施[2]。
除了相互依赖的关系之外,多层网络还可以描述复杂系统之间其他性质的耦合或联系,如协作[10]、竞争[11-12]和对抗[13]等。人们将网络层间存在依赖关系的多层网络称为相依网络,或网络的网络[14-16]。另外,多层网络还可以表示同一组节点具有不同性质连接的网络。在这样的多层网络中,每种类型的连接都可独自形成一个网络,但是它们共享同一个节点集合。如航空网络可被视作一个多层网络,每个机场为一个节点,不同航空公司的航线为不同类型的连接[17]。当然在多层网络中并不一定每个节点都能够出现在所有的网络层中,但每层网络中出现的节点都是系统节点的子集。如某些航空公司在某些机场并不一定有运营的航班,但是其包含的节点一定是航空网络中所有节点(机场)的子集。类似地,多层网络中的同一节点可在不同网络层中扮演不同角色,如在交通网络中,一个城市可能同时是航空网络、铁路网络和公路网络的交通枢纽[18]。在这种情况下,同一个节点的不同角色互为副本节点,类似的情况还存在于社交网络中[19-21]。
文献[3]于2010年提出了双层相依网络上的渗流模型,用于研究网络之间的相互依赖性对于级联故障和网络鲁棒性的影响。在相依网络中,一旦某个节点被删除或者失效,与其互相依赖的其他网络中的节点就会完全失效。这是一种非常强的依赖关系,在这种情况下,相依网络和共享同一节点集的多层网络等价。研究发现,双层相依网络上的渗流模型为一阶不连续相变,这与单层网络上的二阶连续相变有着本质的不同。该结论证明了网络的相互依赖性不但极大地降低了网络鲁棒性,而且影响了网络的破碎方式。更令人惊讶的是,当相依网络的度分布的异质性增强时,相依网络对随机故障的脆弱性也会增强,如两个具有幂律度分布的相依无标度网络会比两个相依随机网络在随机攻击下更加脆弱,这与单个网络的情况完全相反(单个无标度网络对于随机攻击的鲁棒性是非常高的)。从统计物理学的角度来看,多层相依网络上的一阶不连续相变本质上为混合相变(hybrid percolation),即在网络发生渗流相变的临界点,网络巨分支规模既存在二阶连续相变所具备的临界现象,也存在一阶相变的不连续跳跃现象。系统的序参量(互联巨分支规模S)与节点的保留概率p存在渐近关系
$ S - {S_c} \propto $ $ {(p - {p_c})^{1/2}} $ ,其中$ {p_c} $ 为网络发生渗流相变的临界点。这与单层网络中k核渗流[22]、靴攀渗流[23]、关节节点渗流[24]及核渗流[25]中的混合相变完全相同[26]。以上研究是基于网络节点的强依赖假设,即多层网络中相互依赖的一组节点,其中一个失效时,其余也立即失效。这种点对点的强相互依赖还被推广到单层网络中,用于描述节点之间的隐含依赖性[27-33]。强依赖虽然能够刻画一些现实系统之间的节点耦合机制,但在某些情况下网络中某个节点的失效可能不会导致其他网络中与之依赖的节点完全失效,而是造成一定程度的损害,从这个角度来说弱耦合机制更能够描述复杂系统之间更为一般的耦合和联系。在弱依赖的情形下,多层网络的性质与强依赖的情况有明显的不同。首先,网络与网络之间耦合拓扑结构会对网络的级联失效动力学有着强烈的影响。而对于强耦合的多层网络中的一组相依节点,一旦其中一个节点失效,其余节点也就完全失效,它们之间的依赖结构不会对系统有显著影响。此外,弱依赖多层网络模型能够描述复杂系统更为丰富的耦合机制,如依赖强度的异质性[34]、依赖强度的非对称性[35]及依赖关系的拓扑结构[36]等。在弱依赖的情况下,多层网络在级联失效过程中会表现出更为丰富的相变现象。
多层网络的研究已经吸引了物理学、数学、信息科学、管理学和计算机等多学科交叉领域学者的广泛关注。经过十多年的发展,多层网络级联失效已在理论建模、实证分析和应用研究方面取得非常丰富的成果,国内相关学者已经在概念模型[37]、功能与动力学[38-39]、鲁棒性优化[40]和级联失效的预防[41]等方面进行了较为系统的综述。在多层网络的研究中,渗流理论扮演了非常重要的角色。为了介绍渗流理论对多层网络模型的作用和相关进展,本文聚焦基于渗流理论的相依多层网络上的级联失效。首先介绍描述相依多层网络级联失效的理论模型,再分别介绍多层网络跨层节点耦合特性、网络层内连接结构特征、层内节点耦合特性、攻击方式等几个方面的特征对鲁棒性和级联失效动力学的作用,然后介绍具有弱耦合机制的多层网络上的级联失效动力学的特性,最后进行总结并展望未来可能的研究问题和相关方向。
-
多层网络模型始于相依双层网络级联失效模型的研究[3]。随后人们将双层相依网络推广到了M个网络,因此双层相依网络是多层网络的一个特例[42-43]。这M个网络都具有N个节点,将这M个网络标记为A,B,
$\cdots, $ 每个网络中的N个节点按照自然数编号为1,2,$\cdots,$ N。不同网络中具有相同自然数编号的节点具有相互依赖性。第一个网络中的某个节点Ai,第二个网络中节点Bi 等M个网络中的M个节点之间存在相互依赖性。对于互相依赖的一组节点,如果其中一个节点失效,其余所有节点就会立即失效。这M个网络中任意一个网络X都可以拥有独立或相关联的拓扑结构。多层网络的级联失效由随机删除网络A中比例为1−p的节点触发,其中p表示保留节点的比例。由于不同网络中节点之间的互相依赖性,网络A中的一个节点删除会导致其余M−1个网络中依赖于该节点的节点也立即失效。当一个节点失效时,其所有边也将会被删除。各层网络中一部分节点失效后,会破碎成一些规模不等的分支,这些分支被称为分支集群。如果一些节点和它们所依赖的节点在各自所在的网络层中都能形成同一个分支,则这样的分支被称为互连分支。但是,由于网络连接方式的差异性,某个网络中的一个分支中的节点在另一个网络中所依赖的节点并不一定能够形成同一个分支。因此,不能形成互连分支的节点将会被删除,从而诱发网络的进一步破碎,进而形成一个级联失效的过程。经过一定步数的迭代,网络最终会达到一个稳态。
图1展示了相依网络级联失效示意图。在图1a中,级联失效由初始失效的A3节点触发;在图1b中,A网络破碎成两个分支{A1, A2}和{A4, A5, A6, A7},B网络破碎成3个分支{B1, B2},{B4}和{B5, B6, B7},由于{A1, A2}和{B1, B2}分支在网络A和B中同时存在, 构成一个互联分支集群。同时由于{B4}分支独立,将会导致节点A4的连接被删除,导致网络A分支{A4, A5, A6, A7}进一步破碎为{A4},{A5}和{A6, A7}。在图1c中,{A5}为独立分支,将会导致B5节点的连接被删除。在图1d中,网络B进一步发生破碎,最终又会导致A6和A7之间的连接被删除,并达到AB两个网络中的互联分支都一致的稳态。
在达到稳态的时候,只有网络互连巨分支中的节点才能保存下来,用互连巨分支的规模S来度量网络的鲁棒性。理论和数值模拟研究的结果发现,如果保留节点的比例大于一个临界值pc,在级联故障过程结束时,网络的互连巨分支就能够存在,即S>0,相依网络的功能就能保留下来;反之如果p<pc,互连巨分支就不存在,网络会破碎成非常小的碎片。
多层网络上的级联失效的临界点可用概率生成函数的方法来求解。定义RX为网络X中的一条随机边能够连接到稳态时互连巨分支的概率,其中
$X \in {\text{\{ }}A,B,\cdots {\text{\} }}$ 。同时定义$ G_0^X( x ) = \displaystyle \sum\limits_k {p_k^X{x^k}} $ 为网络X的度分布的生成函数,$ G_1^X ( x ) = \displaystyle \sum\limits_k {p_k^Xk/\left\langle k \right\rangle {x^{k - 1}}} $ 为网络X的余度分布的生成函数,其中$ p_k^X $ 为网络X的度分布。当网络X中的一条随机边能够连接到巨分支时,在沿着这条随机边所到达的一个节点的其余边中,需要至少有一条能够连接到网络的巨分支。这条随机边所到达节点的度值k服从概率分布$ p_k^Xk/\left\langle k \right\rangle $ ,因此网络X中的一条随机边能够连接到巨分支的概率为$ 1 - \displaystyle \sum\limits_k {p_k^Xk/\left\langle k \right\rangle } {(1 - {R^X})^{k - 1}} $ ,写成生成函数的形式为$ 1 - G_1^X ( {1 - {R^X}} ) $ 。类似地,对于度为k的节点,属于互连巨分支则需要在所有k条边中至少有一条能够通向互连巨分支,其概率可以表示为$ 1 - {(1 - {R^X})^k} $ 。考虑网络度分布$ {p}_{k}^{X} $ ,一个随机节点属于网络X巨分支的概率为$ 1 - \displaystyle \sum\limits_k {p_k^X} {(1 - {R^X})^k} $ ,写成生成函数的形式为$ 1 - G_0^X( {1 - {R^X}} ) $ 。因此,对于任意一个$ {R}^{X} $ 满足方程:$$ {R^X} = p\left[ {1 - G_1^X\left( {1 - {R^X}} \right)} \right]\prod\limits_{Y \ne X} {\left[ {1 - G_0^Y\left( {1 - {R^Y}} \right)} \right]} \equiv {\psi ^X}$$ (1) 网络互联巨分支的规模S可以写成:
$$ {S^X} = p\prod\limits_{X \in A,B, \cdots } {\left[ {1 - G_0^X\left( {1 - {R^X}} \right)} \right]} $$ (2) 随着节点保留比例p的变化,当
$ {\psi }^{X} $ 首次与$ {R}^{X} $ 相等的时候,系统将发生渗流相变。考虑系统中所有的网络,系统发生渗流相变的临界点可由如下方程组给出:$$ {\text{det}}\left[ {{\boldsymbol{J}} - {\boldsymbol{I}}} \right] = 0 $$ (3) 式中,I为单位矩阵;J表示雅克比矩阵,其元素
$ {J_{AB}} = \partial {\psi ^A}/\partial {R^B} $ 。在临界点将$ {\psi ^X} $ 展开,在式(1)和式(2)被同时满足的情况下可得:$$ S - {S_c} \propto {R^X} - R_c^X \propto {\left( {p - {p_c}} \right)^{1/2}} $$ (4) 这一结果表明多层网络上的不连续相变为混合相变,同时具备二阶相变的临界特性也具有一阶不连续相变的跳跃[44]。这与k核渗流、靴攀渗流、核渗流和关节节点渗流中的混合相变的类型完全相同。文献[24,45]的研究也说明,这种混合相变只存在于级联失效的稳态中,如果强行使级联过程在任何有限次停止,都只能观察到与经典渗流一样的临界现象。文献[46]研究了具备动力学过程的多层网络上的鲁棒性,发现不连续相变在耦合动力学系统上仍然存在。
代入网络的度分布,可通过式(1)和式(2)求出网络的渗流相变点pc和网络巨分支的大小S。有关多层网络模型的概率生成函数求解的方法,文献[26,42]已经进行了综述。对于单个网络的情况下,网络度分布的异质性越强,其渗流临界值pc就越小。与此相反的是,相互依赖的网络度分布的异质性越强,网络的临界值pc就会越大。这说明在平均度相同的情况下,度分布异质性较强的多层网络更脆弱,这一结果与单层网络的情况截然相反。
多层网络中这种不连续相变的产生机理可由多层网络中的“临界节点”来解释。临界节点被定义为满足如下两个条件的节点:1) 其自身或其任意依赖节点有且只有一条边能够连接到所在网络的巨分支,这条边被称为临界边;2) 其自身和其所有依赖节点都能够连接到它们所在网络的巨分支。这条临界边至关重要,一旦它所连接的邻居被删除,临界节点和它的依赖节点都会被删除。在此失效传播过程中,这条边具有指向性,从临界节点的一个邻居指向该临界节点。当临界节点通过这些临界边能够连接在一起的时候,就形成了一个“临界分支”。一旦其中一个临界节点被删除,雪崩就会沿着一定方向在临界分支中传播,处在临界分支最顶端的节点被称为“基石节点”,它的删除会导致整个临界分支的崩溃。当p从大至小接近临界点时,临界分支的发散会导致网络巨分支的不连续跳跃[44]。
Percolation and Cascading Dynamics on Multilayer Complex Networks
-
摘要: 多层网络描述了复杂系统之间或强或弱的耦合或联系。为了较为系统和全面地介绍基于渗流理论的多层网络鲁棒性研究,该文综述了多层网络跨层节点的依赖特征、层内节点的连接结构特征、层内节点的耦合特性和攻击方式对级联失效动力学和鲁棒性的影响。与单层网络完全不同,多层网络会在遭受攻击时发生突然性的崩溃;同时度分布异质性较强的多层网络会更为脆弱,在崩溃中会出现多重相变或混合相变现象。此外,弱依赖机制使得多层网络模型能够描述复杂系统更多丰富的细节,如依赖强度的异质性、依赖强度的非对称性及依赖关系的拓扑结构等。这些结果表明,多层网络的级联失效过程比单层网络更加复杂,忽视复杂系统之间的依赖性可能会高估复杂网络的鲁棒性甚至会带来完全错误的认识。Abstract: The multilayer network describes either strong or weak coupling or connections among complex systems. In order to provide a more systematic and comprehensive understanding of the study for the robustness of multilayer networks that based on percolation theory, this paper reviews the effects of interdependency characteristics of cross-layer nodes, connectivity characteristics of intra-layer nodes, interdependency characteristics of intra-layer nodes, attack strategies on the cascading dynamics, and robustness of multilayer networks. Different from single-layer network, the multilayer network will collapse suddenly as a first-order percolation transition when suffered attacks. At the same time, the multilayer networks with strong heterogeneity of degree distribution are more vulnerable and exhibit multiple phase transitions or hybrid phase transitions. In addition, the mechanism of weak interdependence enables multilayer network to describe more details of complex systems, such as the heterogeneity of interdependency strength, the asymmetry of interdependency strength, and the topology of interdependency relations. These results show that the cascading dynamics of multilayer networks are more complicated than that of single-layer networks. Ignoring the interdependencies among complex systems may lead to overestimation of the robustness of complex networks or even a completely wrong understanding.
-
Key words:
- cascading dynamics /
- interdependence /
- multilayer network /
- percolation
-
[1] RINALDI S M, PEERENBOOM J P, KELLY T K. Identifying, understanding, and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems, 2001, 21(6): 11-25. doi: 10.1109/37.969131 [2] OUYANG M. Review on modeling and simulation of interdependent critical infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121: 43-60. [3] BULDYREV S V, PARSHANI R, PAUL G, STANLEY H E, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature (London), 2010, 464: 1025-1028. doi: 10.1038/nature08932 [4] CHEN Z, WU J, XIA Y, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115-119. doi: 10.1109/TCSII.2017.2705758 [5] LIU X, MAIORINO E, HALU A, et al. Robustness and lethality in multilayer biological molecular networks[J]. Nature Communications, 2020, 11: 6043. doi: 10.1038/s41467-020-19841-3 [6] WU J, ZHONG J, CHEN Z, et al. Optimal coupling patterns in interconnected communication networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(8): 1109-1113. doi: 10.1109/TCSII.2018.2808297 [7] TAN F, WU J, XIA Y, et al. Traffic congestion in interconnected complex networks[J]. Phys Rev E, 2014, 89: 062813. doi: 10.1103/PhysRevE.89.062813 [8] SHEN Y, REN G, ZHANG N, et al. Effects of mutual traffic redistribution on robustness of interdependent networks to cascading failures under fluctuant load[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 560: 125138. doi: 10.1016/j.physa.2020.125138 [9] ZHOU S, YANG Y, THOMAS N S, et al. Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures[J]. International Journal of Critical Infrastructure Protection, 2020, 31: 100391. doi: 10.1016/j.ijcip.2020.100391 [10] AZIMI-TAFRESHI N. Cooperative epidemics on multiplex networks[J]. Phys Rev E, 2016, 93: 042303. [11] PODOBNIK B, HORVATIC D, LIPIC T, et al. The cost of attack in competing networks[J]. Journal of The Royal Society Interface, 2015, 12(112): 20150770. doi: 10.1098/rsif.2015.0770 [12] DANZIGER M M, BONAMASSA I, BOCCALETTI S, et al. Dynamic interdependence and competition in multilayer networks[J]. Nature Physics, 2019, 15(2): 178. doi: 10.1038/s41567-018-0343-1 [13] KOTNIS B, KURI J. Percolation on networks with antagonistic and dependent interactions[J]. Phys Rev E, 2015, 91: 032805. doi: 10.1103/PhysRevE.91.032805 [14] HAVLIN S, STANLEY H E, BASHAN A, et al. Percolation of interdependent network of networks[J]. Chaos Solit Fract, 2015, 72: 4-19. [15] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1): 1-122. doi: 10.1016/j.physrep.2014.07.001 [16] GAO J, BULDYREV S V, STANLEY H E, et al. Percolation of a general network of networks[J]. Phys Rev E, 2013, 88: 062816. doi: 10.1103/PhysRevE.88.062816 [17] DU W B, ZHOU X L, LORDAN O, et al. Analysis of the Chinese airline network as multi-layer networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 89: 108-116. doi: 10.1016/j.tre.2016.03.009 [18] WANG S, NIE S, ZHAO L, et al. A multiple perspective method for urban subway network robustness analysis[J]. AIP Advances, 2018, 8(7): 075219. doi: 10.1063/1.5023766 [19] SZELL M, LAMBIOTTE R, THURNER S. Multirelational organization of large-scale social networks in an online world[J]. Proc Nat Aca Sci USA, 2010, 107: 13636-13641. doi: 10.1073/pnas.1004008107 [20] CAI M, WANG W, CUI Y, et al. Multiplex network analysis of employee performance and employee social relationships[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 1-12. doi: 10.1016/j.physa.2017.08.008 [21] XIE J, MENG F, SUN J, et al. Detecting and modelling real percolation and phase transitions of information on social media[J]. Nature Human Behaviour, 2021, 5: 1161-1168. doi: 10.1038/s41562-021-01090-z [22] DOROGOVTSEV S N, GOLTSEV A V, MENDES J F F. k-core organization of complex networks[J]. Phys Rev Lett, 2006, 96: 040601. doi: 10.1103/PhysRevLett.96.040601 [23] BAXTER G J, DOROGOVTSEV S N, GOLTSEV A V, et al. Bootstrap percolation on complex networks[J]. Phys Rev E, 2010, 82: 011103. doi: 10.1103/PhysRevE.82.011103 [24] TIAN L, BASHAN A, SHI D N, et al. Articulation points in complex networks[J]. Nature Communications, 2017, 8: 14223. doi: 10.1038/ncomms14223 [25] LIU Y Y, CSÓKA E, ZHOU H, et al. Core percolation on complex networks[J]. Phys Rev Lett, 2012, 109: 205703. doi: 10.1103/PhysRevLett.109.205703 [26] LI M, LIU R R, LÜ L, et al. Percolation on complex networks: Theory and application[J]. Physics Reports, 2021, 907: 1-68. doi: 10.1016/j.physrep.2020.12.003 [27] BASHAN A, HAVLIN S. The combined effect of connectivity and dependency links on percolation of networks[J]. Journal of Statistical Physics, 2011, 145(3): 686-695. doi: 10.1007/s10955-011-0333-5 [28] PARSHANI R, BULDYREV S V, HAVLIN S. Critical effect of dependency groups on the function of networks[J]. Proc Natl Acad Sci USA, 2011, 108: 1007-1010. doi: 10.1073/pnas.1008404108 [29] LI M, LIU R-R, JIA C-X, et al. Critical effects of overlapping of connectivity and dependence links on percolation of networks[J]. New Journal of Physics, 2013, 15(9): 093013. doi: 10.1088/1367-2630/15/9/093013 [30] NIU D, YUAN X, DU M, et al. Percolation of networks with directed dependency links[J]. Phys Rev E, 2016, 93: 042312. [31] BASHAN A, PARSHANI R, HAVLIN S. Percolation in networks composed of connectivity and dependency links[J]. Phys Rev E, 2011, 83: 051127. doi: 10.1103/PhysRevE.83.051127 [32] WANG Z, ZHOU D, HU Y. Group percolation in interdependent networks[J]. Phys Rev E, 2018, 97: 032306. [33] LI M, WANG B H. Percolation on networks with dependence links[J]. Chinese Physics B, 2014, 23(7): 076402. doi: 10.1088/1674-1056/23/7/076402 [34] KONG L W, LI M, LIU R R, et al. Percolation on networks with weak and heterogeneous dependency[J]. Phys Rev E, 2017, 95: 032301. [35] LIU R R, JIA C X, LAI Y C. Asymmetry in interdependence makes a multilayer system more robust against cascading failures[J]. Phys Rev E, 2019, 100: 052306. [36] CAO Y Y, LIU R R, JIA C X, et al. Percolation in multilayer complex networks with connectivity and interdependency topological structures[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92: 105492. doi: 10.1016/j.cnsns.2020.105492 [37] 张欣. 多层复杂网络理论研究进展: 概念、理论和数据[J]. 复杂系统与复杂性科学, 2015, 12: 103-107. ZHANG X. Multilayer networks science: Concepts, theories and data[J]. Complex Systems and Complexity Science, 2015, 12: 103-107. [38] 陆君安. 从单层网络到多层网络——结构、动力学和功能[J]. 现代物理知识, 2015, 27: 3-8. LU J A. From single layer to multilayer networks - structure, dynamics, and function[J]. Knowledge of Modern Physics, 2015, 27: 3-8. [39] 吴宗柠, 狄增如, 樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报, 2021, 50(1): 106-120. doi: 10.12178/1001-0548.2020068 WU Z N, DI Z R, FAN Y. The structure and function of multilayer networks: Progress and prospects[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 106-120. doi: 10.12178/1001-0548.2020068 [40] 王哲, 李建华, 康东, 等. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17: 1-26, 46. WANG Z, LI J H, KANG D, et al. Review on strategies enhancing the robustness of complex network[J]. Complex Systems and Complexity Science, 2020, 17: 1-26, 46. [41] JIANG W J, LIU R R, FAN T L, et al. Overview of precaution and recovery strategies for cascading failures in multilayer networks[J]. Acta Physica Sinica, 2020, 69: 088904. doi: 10.7498/aps.69.20192000 [42] GAO J, BULDYREV S V, STANLEY H E, et al. Robustness of a network of networks[J]. Phys Rev Lett, 2011, 107: 195701. doi: 10.1103/PhysRevLett.107.195701 [43] GAO J, BULDYREV S V, STANLEY H E, et al. Networks formed from interdependent networks[J]. Nature Physics, 2012, 8: 40-48. doi: 10.1038/nphys2180 [44] BAXTER G J, DOROGOVTSEV S N, GOLTSEV A V, et al. Avalanche collapse of interdependent networks[J]. Phys Rev Lett, 2012, 109: 248701. doi: 10.1103/PhysRevLett.109.248701 [45] LI M, LÜ L, DENG Y, et al. History-dependent percolation on multiplex networks[J]. National Science Review, 2020, 7(8): 1296-1305. doi: 10.1093/nsr/nwaa029 [46] DUAN D, LV C, SI S, et al. Universal behavior of cascading failures in interdependent networks[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22452-22457. doi: 10.1073/pnas.1904421116 [47] FENG L, MONTEROLA C P, HU Y. The simplified self-consistent probabilities method for percolation and its application to interdependent networks[J]. New Journal of Physics, 2015, 17(6): 063025. doi: 10.1088/1367-2630/17/6/063025 [48] PARSHANI R, BULDYREV S V, HAVLIN S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition[J]. Phys Rev Lett, 2010, 105: 048701. doi: 10.1103/PhysRevLett.105.048701 [49] BIANCONI G, DOROGOVTSEV S N. Multiple percolation transitions in a configuration model of network of networks[J]. Phys Rev E, 2014, 89(6): 062814. doi: 10.1103/PhysRevE.89.062814 [50] SCHNEIDER C M, YAZDANI N, ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific Reports, 2013, 3: 1969. doi: 10.1038/srep01969 [51] WANG J, SUN S, WANG L, et al. Structural vulnerability analysis of partially interdependent networks: The joint influence of interdependence and local worlds[J]. Frontiers in Physics, 2020, 8: 499. [52] SHAO S, HUANG X, STANLEY H E, et al. Robustness of a partially interdependent network formed of clustered networks[J]. Phys Rev E, 2014, 89: 032812. doi: 10.1103/PhysRevE.89.032812 [53] SHAO J, BULDYREV S V, HAVLIN S, et al. Cascade of failures in coupled network systems with multiple support-dependence relations[J]. Phys Rev E, 2011, 83: 036116. doi: 10.1103/PhysRevE.83.036116 [54] ZHANG H, ZHOU J, ZOU Y, et al. Asymmetric interdependent networks with multiple-dependence relation[J]. Phys Rev E, 2020, 101: 022314. [55] DONG G, CHEN Y, WANG F, et al. Robustness on interdependent networks with a multiple-to-multiple dependent relationship[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(7): 073107. doi: 10.1063/1.5093074 [56] PARSHANI R, ROZENBLAT C, IETRI D, et al. Inter-similarity between coupled networks[J]. EPL, 2011, 92(6): 68002. [57] SERGEY V B, NATHANIEL W S, GABRIEL A C. Interdependent networks with identical degrees of mutually dependent nodes[J]. Phys Rev E, 2011, 83: 016112. doi: 10.1103/PhysRevE.83.016112 [58] VALDEZ L D, MACRI P A, STANLEY H E, et al. Triple point in correlated interdependent networks[J]. Phys Rev E, 2013, 88: 050803. doi: 10.1103/PhysRevE.88.050803 [59] MIN B, YI S D, LEE K M, et al. Network robustness of multiplex networks with interlayer degree correlations[J]. Phys Rev E, 2014, 89: 042811. doi: 10.1103/PhysRevE.89.042811 [60] YANG X H, FENG W H, XIA Y, et al. Improving robustness of interdependent networks by reducing key unbalanced dependency links[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 3187-3191. doi: 10.1109/TCSII.2020.2967340 [61] TIAN M, WANG X, DONG Z, et al. Cascading failures of interdependent modular scale-free networks with different coupling preferences[J]. EPL, 2015, 111(1): 18007. [62] WANG J, FANG H, QIN X. Cascading failures on correlated interdependent networks with dependency groups[J]. Physica A: Statistical Mechanics and its Applications, 2019, 530: 121355. doi: 10.1016/j.physa.2019.121355 [63] TURALSKA M, BURGHARDT K, ROHDEN M, et al. Cascading failures in scale-free interdependent networks[J]. Phys Rev E, 2019, 99: 032308. [64] HACKETT A, CELLAI D, GÓMEZ S, et al. Bond percolation on multiplex networks[J]. Phys Rev X, 2016, 6: 021002. [65] KRYVEN I, BIANCONI G. Enhancing the robustness of a multiplex network leads to multiple discontinuous percolation transitions[J]. Phys Rev E, 2019, 100: 020301. [66] HU Y, ZHOU D, ZHNAG R, et al. Percolation of interdependent networks with intersimilarity[J]. Phys Rev E, 2013, 88: 052805. doi: 10.1103/PhysRevE.88.052805 [67] CELLAI D, LÓPEZ E, ZHOU J, et al. Percolation in multiplex networks with overlap[J]. Phys Rev E, 2013, 88: 052811. doi: 10.1103/PhysRevE.88.052811 [68] KLEINEBERG K K, BOGUNÁ M, SERRANO M Á, et al. Hidden geometric correlations in real multiplex networks[J]. Nature Physics, 2016, 12(1076): 1076-1081. [69] KORNBLUTH Y, LOWINGER S, CWILICH G, et al. Cascading failures in networks with proximate dependent nodes[J]. Phys Rev E, 2014, 89: 032808. doi: 10.1103/PhysRevE.89.032808 [70] XU K J, HONG C, ZHANG X H, et al. Cascades in coupled map lattices with heterogeneous distribution of perturbations[J]. Physica A: Statistical Mechanics and its Applications, 2020, 547: 123839. doi: 10.1016/j.physa.2019.123839 [71] KLEINEBERG K K, BUZNA L, PAPADOPOULOS F, et al. Geometric correlations mitigate the extreme vulnerability of multiplex networks against targeted attacks[J]. Phys Rev Lett, 2017, 118: 218301. doi: 10.1103/PhysRevLett.118.218301 [72] SHEKHTMAN L M, BEREZIN Y, DANZIGER M M, et al. Robustness of a network formed of spatially embedded networks[J]. Phys Rev E, 2014, 90: 012809. doi: 10.1103/PhysRevE.90.012809 [73] BASHAN A, BEREZIN Y, BULDYREV S V, et al. The extreme vulnerability of interdependent spatially embedded networks[J]. Nature Physics, 2013, 9: 667-672. doi: 10.1038/nphys2727 [74] RADICCHI F, BIANCONI G. Redundant interdependencies boost the robustness of multiplex networks[J]. Phys Rev X, 2017, 7: 011013. [75] TAN F, TANG M, ZOU Y, et al. Interdependent networks with redundant and dependent interconnections[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 526: 120777. doi: 10.1016/j.physa.2019.04.013 [76] HUANG X, SHAO S, WANG H, et al. The robustness of interdependent clustered networks[J]. EPL, 2013, 101(1): 18002. doi: 10.1209/0295-5075/101/18002 [77] DONG G, TIAN L, DU R, et al. Analysis of percolation behaviors of clustered networks with partial support-dependence relations[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 394: 370-378. doi: 10.1016/j.physa.2013.09.055 [78] LIU X, STANLEY H E, GAO J. Breakdown of interdependent directed networks[J]. Proceedings of the National Academy of Sciences, 2016, 113(5): 1138-1143. doi: 10.1073/pnas.1523412113 [79] LIU X, PAN L, STANLEY H E, et al. Multiple phase transitions in networks of directed networks[J]. Phys Rev E, 2019, 99: 012312. [80] FAQEEH A, OSAT S, RADICCHI F. Characterizing the analogy between hyperbolic embedding and community structure of complex networks[J]. Phys Rev Lett, 2018, 121: 098301. doi: 10.1103/PhysRevLett.121.098301 [81] SUN J, ZHANG R, FENG L, et al. Extreme risk induced by communities in interdependent networks[J]. Communications Physics, 2019, 2(1076): 45. [82] DONG G, FAN J, SHEKHTMAN L M, et al. Resilience of networks with community structure behaves as if under an external field[J]. Proc Nat Aca Sci USA, 2018, 115(27): 6911-6915. doi: 10.1073/pnas.1801588115 [83] SHEKHTMAN L M, HAVLIN S. Percolation of hierarchical networks and networks of networks[J]. Phys Rev E, 2018, 98: 052305. [84] SHEKHTMAN L M, SHAI S, HAVLIN S. Resilience of networks formed of interdependent modular networks[J]. New Journal of Physics, 2015, 17(12): 123007. doi: 10.1088/1367-2630/17/12/123007 [85] AZIMI-TAFRESHI N, GÓMEZ-GARDENES J, DOROGOVTSEV S N. K-core percolation on multiplex networks[J]. Phys Rev E, 2014, 90: 032816. doi: 10.1103/PhysRevE.90.032816 [86] PANDURANGA N K, GAO J, YUAN X, et al. Generalized model for k-core percolation and interdependent networks[J]. Phys Rev E, 2017, 96: 032317. [87] OSAT S, RADICCHI F, PAPADOPOULOS F. K-core structure of real multiplex networks[J]. Phys Rev Research, 2020, 2: 023176. doi: 10.1103/PhysRevResearch.2.023176 [88] SHANG Y. Generalized k-core percolation on correlated and uncorrelated multiplex networks[J]. Phys Rev E, 2020, 101: 042306. [89] SHANG Y. Percolation of attack with tunable limited knowledge[J]. Phys Rev E, 2021, 103: 042316. [90] ZHANG J, FU L, LI S, et al. Core percolation in interdependent networks[J]. IEEE Transactions on Network Science and Engineering, 2019, 6(4): 952-967. doi: 10.1109/TNSE.2018.2884774 [91] AZIMI-TAFRESHI N, OSAT S, DOROGOVTSEV S N. Generalization of core percolation on complex networks[J]. Phys Rev E, 2019, 99: 022312. [92] HUANG X, GAO J, BULDYREV S V, et al. Robustness of interdependent networks under targeted attack[J]. Phys Rev E, 2011, 83: 065101. doi: 10.1103/PhysRevE.83.065101 [93] CAI Q, PRATAMA M, ALAM S. Interdependency and vulnerability of multipartite networks under target node attacks[J]. Complexity, 2019, 2019: 2680972. [94] DONG G, GAO J, TIAN L, et al. Percolation of partially interdependent networks under targeted attack[J]. Phys Rev E, 2012, 85: 016112. doi: 10.1103/PhysRevE.85.016112 [95] DONG G, GAO J, DU R, et al. Robustness of network of networks under targeted attack[J]. Phys Rev E, 2013, 87: 052804. doi: 10.1103/PhysRevE.87.052804 [96] BAXTER G J, TIMÁR G, MENDES J F F. Targeted damage to interdependent networks[J]. Phys Rev E, 2018, 98: 032307. [97] SHAO S, HUANG X, STANLEY H E, et al. Percolation of localized attack on complex networks[J]. New Journal of Physics, 2015, 17(2): 023049. doi: 10.1088/1367-2630/17/2/023049 [98] DONG G, DU R, HAO H, et al. Modified localized attack on complex network[J]. EPL, 2016, 113(2): 28002. doi: 10.1209/0295-5075/113/28002 [99] DONG G, XIAO H, WANG F, et al. Localized attack on networks with clustering[J]. New Journal of Physics, 2019, 21(1): 013014. doi: 10.1088/1367-2630/aaf773 [100] GONG K, WU J J, LIU Y, et al. The effective healing strategy against localized attacks on interdependent spatially embedded networks[J]. Complexity, 2019, DOI: 10.1155/2019/7912857. [101] OUYANG M. A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks[J]. European Journal of Operational Research, 2017, 262(3): 1072-1084. doi: 10.1016/j.ejor.2017.04.022 [102] VAKNIN D, DANZIGER M M, HAVLIN S. Spreading of localized attacks in spatial multiplex networks[J]. New Journal of Physics, 2017, 19(7): 073037. doi: 10.1088/1367-2630/aa7b09 [103] YUAN X, SHAO S, STANLEY H E, et al. How breadth of degree distribution influences network robustness: Comparing localized and random attacks[J]. Phys Rev E, 2015, 92: 032122. [104] LIU Y, ZHAO C, YI D, et al. Robustness of partially interdependent networks under combined attack[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(2): 021101. doi: 10.1063/1.5085850 [105] LIU R R, LI M, JIA C X. Cascading failures in coupled networks: The critical role of node-coupling strength across networks[J]. Scientific Reports, 2016, 6: 35352. doi: 10.1038/srep35352 [106] LIU R R, EISENBERG D A, SEAGER T P, et al. The ‘weak’ interdependence of infrastructure systems produces mixed percolation transitions in multilayer networks[J]. Scientific Reports, 2018, 8: 2111. doi: 10.1038/s41598-018-20019-7 [107] JIANG W J, LIU R R, JIA C X. Depth penetration and scope extension of failures in the cascading of multilayer networks[EB/OL]. (2019-11-13). http://arxiv.org/abs/1911.05338. [108] ZANG W, JI X, LIU S, et al. Percolation on interdependent networks with cliques and weak interdependence[J]. Physica A: Statistical Mechanics and its Applications, 2021, 566: 125612. doi: 10.1016/j.physa.2020.125612 [109] ROSSA F D, PECORA L, BLAHA K, et al. Symmetries and cluster synchronization in multilayer networks. Nature Communications, 2020, 11(1): 3179. [110] ZHUANG J, CAO J, TANG L, et al. Synchronization analysis for stochastic delayed multilayer network with additive couplings[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2020, 50(11): 4807-4816. doi: 10.1109/TSMC.2018.2866704 [111] YANG H, WANG Z, SONG Q, et al. Quasi-synchronization of multilayer heterogeneous networks with a dynamic leader[J]. International Journal of Robust and Nonlinear Control, 2020, 30(7): 2736-2751. doi: 10.1002/rnc.4903 [112] ZHANG X, TANG L, LU J. Synchronization analysis on two-layer networks of fractionalorder systems: Intraiayer and interiayer synchronization[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2020, 67(7): 2397-2408. doi: 10.1109/TCSI.2020.2971608 [113] WU J, LI X. Collective synchronization of kuramoto-oscillator networks[J]. IEEE Circuits and Systems Magazine, 2020, 20(3): 46-67. doi: 10.1109/MCAS.2020.3005485 [114] MA C, YANG Q, WU X, et al. Cluster synchronization: From single-layer to multi-layer networks[J]. Chaos, 2019, 29(12): 123120. doi: 10.1063/1.5122699 [115] WANG Z, ALSAADI F E, PHAM V T. Synchronization in a multilayer neuronal network: Effect of time delays[J]. European Physical Journal-Special Topics, 2019, 228(11): 2391-2403. doi: 10.1140/epjst/e2019-900052-3 [116] XU M M, LU J A, ZHOU J. Synchronizability and eigenvalues of two-layer star networks[J]. Acta Physica Sinica, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902 [117] PERC M. Diffusion dynamics and information spreading in multilayer networks: An overview[J]. European Physical Journal-Special Topics, 2019, 228(11): 2351-2355. doi: 10.1140/epjst/e2019-900201-4 [118] YI Y, ZHANG Z, GAN C. The outbreak threshold of information diffusion over social-physical networks[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 526: 121128. doi: 10.1016/j.physa.2019.121128 [119] ARRUDA G F, RODRIGUES F A, MORENO Y. Fundamentals of spreading processes in single and multilayer complex networks[J]. Physics Reports, 2018, 756: 1-59. doi: 10.1016/j.physrep.2018.06.007 [120] HUANG Y, DAI H. Multiplex conductance and gossip based information spreading in multiplex networks[J]. IEEE Transactions on Network Science and Engineering, 2019, 6(3): 391-401. doi: 10.1109/TNSE.2018.2838104 [121] WU D, TANG M, LIU Z, et al. Impact of inter-layer hopping on epidemic spreading in a multilayer network[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105403. doi: 10.1016/j.cnsns.2020.105403 [122] WANG W, TANG M, STANLEY H E, et al. Social contagions with communication channel alternation on multiplex networks[J]. Phys Rev E, 2018, 98: 062320. [123] WANG N N, JIN Z, WANG Y J, et al. Epidemics spreading in periodic double layer networks with dwell time[J]. Physica A-Statistical Mechanics and Its Applications, 2020, 540: 123226. doi: 10.1016/j.physa.2019.123226 [124] MIN Y, HU J, WANG W, et al. Diversity of multilayer networks and its impact on collaborating epidemics[J]. Phys Rev E, 2014, 90: 062803. doi: 10.1103/PhysRevE.90.062803 [125] WANG W, LIU Q H, CAI S M, et al. Suppressing disease spreading by using information diffusion on multiplex networks[J]. Scientific Reports, 2016, 6: 29259. doi: 10.1038/srep29259 [126] WANG B, TANAKA G, SUZUKI H, et al. Epidemic spread on interconnected metapopulation networks[J]. Phys Rev E, 2014, 90: 032806. doi: 10.1103/PhysRevE.90.032806 [127] ZHOU S, XU S, WANG L, et al. Propagation of interacting diseases on multilayer networks[J]. Phys Rev E, 2018, 98: 012303. [128] WANG H, CHEN C, QU B, et al. Epidemic mitigation via awareness propagation in communication networks: The role of time scales[J]. New Journal of Physics, 2017, 19(7): 073039. doi: 10.1088/1367-2630/aa79b7 [129] CHEN X, WANG R, TANG M, et al. Suppressing epidemic spreading in multiplex networks with social-support[J]. New Journal of Physics, 2018, 20(1): 013007. doi: 10.1088/1367-2630/aa9cda [130] JIANG J, LIANG J, ZHOU T. Modeling of epidemic spreading on multilayer networks in uncertain environments[J]. Journal of Statistical Mechanics-Theory and Experiment, 2019, 2019(10): 103404. doi: 10.1088/1742-5468/ab4586 [131] BUONO C, BRAUNSTEIN L A. Immunization strategy for epidemic spreading on multilayer networks[J]. EPL, 2015, 109(2): 26001. doi: 10.1209/0295-5075/109/26001 [132] WANG X, ALETA A, LU D, et al. Directionality reduces the impact of epidemics in multilayer networks[J]. New Journal of Physics, 2019, 21(9): 093026. doi: 10.1088/1367-2630/ab3dd0 [133] ZHAO D, WANG L, LI S, et al. Immunization of epidemics in multiplex networks[J]. PloS One, 2014, 9(11): e112018. doi: 10.1371/journal.pone.0112018 [134] SU Q, WANG L, STANLEY H E. Understanding spatial public goods games on three-layer networks[J]. New Journal of Physics, 2018, 20(10): 103030. doi: 10.1088/1367-2630/aae6dd [135] WANG Z, WANG L, PERC M. Degree mixing in multilayer networks impedes the evolution of cooperation[J]. Phys Rev E, 2014, 89: 052813. doi: 10.1103/PhysRevE.89.052813 [136] SHEN C, CHU C, SHI L, et al. Coevolutionary resolution of the public goods dilemma in interdependent structured populations[J]. EPL, 2018, 124: 48003. doi: 10.1209/0295-5075/124/48003 [137] XIA C, LI X, WANG Z, et al. Doubly effects of information sharing on interdependent network reciprocity[J]. New Journal of Physics, 2018, 20: 075005. doi: 10.1088/1367-2630/aad140 [138] IRANZO J, BULDU J M, AGUIRRE J. Competition among networks highlights the power of the weak[J]. Nature Communications, 2016, 7: 13273. doi: 10.1038/ncomms13273 [139] WANG Z, WANG L, SZOLNOKI A, et al. Evolutionary games on multilayer networks: A colloquium[J]. European Physical Journal B, 2015, 88: 124. doi: 10.1140/epjb/e2015-60270-7 [140] LIU R R, JIA C X, LAI Y C. Remote control of cascading dynamics on complex multilayer networks[J]. New Journal of Physics, 2019, 21(4): 045002. doi: 10.1088/1367-2630/ab0e1a [141] WANG T, CHENG H, WANG X. A link addition method based on uniformity of node degree in interdependent power grids and communication networks[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 560: 125112. doi: 10.1016/j.physa.2020.125112 [142] YUAN X, HU Y, STANLEY H E, et al. Eradicating catastrophic collapse in interdependent networks via reinforced nodes[J]. Proc Nat Acad Sci USA, 2017, 114(13): 3311-3315. doi: 10.1073/pnas.1621369114