-
肝细胞肝癌(hepatocellular carcinoma, HCC)是原发性肝癌中最常见的类型,约占75%~80%。2018年全球的新发病例约84.1万,居恶性肿瘤第六位,约78.2万死亡病例,居恶性肿瘤的第四位,发病率和死亡率有逐年增长的趋势[1]。在中国,肝细胞肝癌发病率和死亡率分别位居恶性肿瘤的第四位和第三位,恶性程度极高[2]。目前,临床上肝癌的治疗手段以外科手术为主,辅以介入治疗、放化疗及靶向药、免疫治疗的多学科综合治疗。尽管治疗方式众多,由于复发与转移等因素的影响,肝癌患者的预后较差,5年生存率低于18%[3-4]。在临床诊疗过程中,TNM分期是评估患者预后情况的经典方法,但由于只能从宏观层面对患者预后进行分析,有一定的局限性。随着医疗水平的提高,基因检测、分子靶向治疗等深入临床,分子水平的预后评判方法是目前的一个研究热点[5]。
转移是一个涉及多步骤的复杂生物学过程,是癌细胞从原发部位向外扩散、侵袭的过程,具有直接浸润、淋巴道转移及血行转移等形式[6]。文献[7-8]发现,转移是肝细胞肝癌的主要生物学特征之一,也是其预后不良的主要原因。近年来,随着高通量测序以及生物信息技术的发展,已有越来越多的肝癌预后模型被建立,以协助判断HCC患者的预后[9-11],但暂时还没有关于转移相关基因的预后模型的报道。因此,本文基于转移相关基因数据集,结合肝细胞癌(the cancer genome atlas, TCGA)的转录组数据和临床数据,构建关于转移相关基因的预后预测模型,并验证该模型的准确性和特异性,以在HCC的预后预测中发挥作用,对肝癌的临床诊疗工作有一定的指导作用。
-
通过差异表达分析,获得了222个差异表达基因,其中39个上调基因,182个下调基因,如图1a和1b所示。将筛选获得的差异基因进行GO功能注释和KEGG通路富集分析,发现差异表达的转移基因主要参与调节上皮细胞增生,胶原分解代谢以及间质发育等生物学过程,其产物主要参与染色体固缩,转录调节复合体等细胞组分,发挥信号转导受体激活和生长因子激活等生物学分子功能,如图2a所示。KEGG通路富集分析表明差异表达的转移相关基因主要参与了细胞因子−细胞因子受体相互作用通路,IL-17和Hippo信号通路,如图2b所示。随后,为了进一步了解差异基因的相互关系,构建了蛋白质互作网络(protein-protein interaction networks, PPI)。通过分析,获得蛋白质互作网络,删除了部分单个存在的基因节点。采用Cytoscape软件进行蛋白质网络的可视化,共获得了194个节点基因,其中红色表示上调基因,蓝色表示下调基因,如图2c所示。其中Generatio是指富集到这个GO条目的基因数目比上所有富集分析的基因数目。
-
基于蛋白质互作网络的节点基因,采用单因素Cox和Kaplan-Meier分析获得了53个预后相关的转移基因,如表1所示。为降低模型的拟合度,采用Lasso回归分析对预后相关的转移基因进一步筛选,如图3a和3b所示,将筛选结果随机分组。TCGA训练集纳入多因素Cox分析,构建了包含4个转移相关基因的多基因预后模型,如图3c所示。
-
根据模型公式分别计算TCGA训练集,TCGA验证集及ICGC验证集的风险评分,风险评分=0.36×STC2表达值+0.23×CDCA8表达值+0.20×CTHRC1表达值+0.22×HOXD9表达值。
表 1 经单因素Cox筛选得到的53个转移相关基因
基因名称 风险比 风险比95%置信区间上限 风险比95%置信区间下限 P ADAM12 1.244 1.099 1.407 0.001 KRT20 1.109 1.030 1.194 0.006 CHGA 1.212 1.100 1.335 P < 0.001 STC2 1.405 1.187 1.663 P < 0.001 FOXM1 1.320 1.120 1.556 0.001 SPP1 1.146 1.081 1.214 P < 0.001 CD24 1.137 1.040 1.242 0.005 MAGEA3 1.090 1.030 1.153 0.003 ESR1 0.809 0.723 0.905 P < 0.001 G6PD 1.474 1.287 1.689 P < 0.001 CCNB1 1.425 1.198 1.696 P < 0.001 KIF14 1.316 1.093 1.585 0.004 CDCA8 1.623 1.331 1.980 P < 0.001 CHAF1B 1.279 1.068 1.531 0.007 FANCD2 1.323 1.073 1.631 0.009 LIN28B 1.116 1.038 1.201 0.003 DEPDC1B 1.303 1.126 1.509 P < 0.001 EZH2 1.547 1.224 1.956 P < 0.001 STMN1 1.394 1.175 1.654 P < 0.001 UHRF1 1.315 1.114 1.553 0.001 MKI67 1.372 1.158 1.626 P < 0.001 ECT2 1.456 1.206 1.757 P < 0.001 RACGAP1 1.502 1.201 1.880 P < 0.001 TOP2A 1.275 1.107 1.469 0.001 KIF2C 1.492 1.258 1.770 P < 0.001 CCNA2 1.304 1.116 1.523 0.001 NDC80 1.483 1.216 1.808 P < 0.001 HMMR 1.347 1.127 1.609 0.001 PTTG1 1.270 1.098 1.469 0.001 UBE2C 1.300 1.128 1.498 P < 0.001 PLK1 1.440 1.210 1.714 P < 0.001 BIRC5 1.308 1.128 1.517 P < 0.001 CDK1 1.341 1.136 1.584 0.001 TPX2 1.526 1.274 1.829 P < 0.001 TACC3 1.414 1.161 1.722 0.001 CYP19A1 1.167 1.074 1.267 P < 0.001 SFN 1.140 1.044 1.244 0.004 UCHL1 1.129 1.039 1.226 0.004 CLDN18 1.175 1.049 1.316 0.005 CLEC1B 0.805 0.713 0.909 0.001 MMP12 1.161 1.063 1.267 0.001 CTHRC1 1.237 1.098 1.393 0.001 MMP1 1.333 1.182 1.504 P < 0.001 PITX2 1.179 1.069 1.300 0.001 MMP10 1.266 1.135 1.412 P < 0.001 KLK6 1.226 1.067 1.409 0.004 ETV4 1.159 1.052 1.276 0.003 GHR 0.782 0.699 0.874 P < 0.001 FOSB 0.866 0.778 0.965 0.009 PTPRR 0.766 0.639 0.919 0.004 HOXD9 1.162 1.045 1.291 0.005 XRCC2 1.317 1.086 1.598 0.005 IL1RL1 0.799 0.700 0.912 0.001 在R语言环境下,本文首先分析了TCGA训练集的风险曲线,生存状态以及4个转移相关基因的表达热图如图4a~4c所示。结果表明随着患者的风险评分增加,患者的死亡人数也增加。生存分析结果表明低风险组的患者5年总体生存率比高风险组患者高,如图4d所示,同时采用ROC曲线进一步分析了该模型的特异性和敏感性,该模型1年、2年和3年的AUC值分别为0.757、0.760和0.745,表明该模型能对肝癌患者的生存状态进行一定的预测,如图4e所示。此外,结合HCC患者的临床信息,评估该模型是否能作为预测HCC患者预后的独立因素。单因素和多因素Cox分析结果均表明该模型的风险评分能独立于患者的临床特征而影响HCC患者的预后,如图4f~4g所示。
-
为了进一步验证该模型的准确性和特异性,在TCGA验证集(n =171)和ICGC数据集(n =230)分别再次进行了验证。结果表明,TCGA验证集的结果与TCGA训练集的结果一致,随着风险评分增加,患者的生存越差,低风险组的患者拥有更好的生存,1年、2年和3年的ROC曲线的AUC值分别为0.715、0.748和0.698,再次验证了该模型的特异性和敏感性。同时独立预后分析结果也表明该模型可以作为HCC患者的独立预后因素,如图5所示。此外,通过分析外部验证集ICGC,本文也获得了与TCGA训练集和验证集相同的结果,如图6所示。结合HPA数据库发现,STC2、CDCA8及CTHRC1在肝癌患者临床组织中高表达,在癌旁组织中低表达,如图7所示。同时,据文献[14]的研究,HOXD9基因在肝癌组织中高表达,癌旁组织中低表达。
Construction and Validation of a Metastasis-Related Prognostic Model for Hepatocellular Carcinoma Patients
-
摘要: 肝细胞肝癌(HCC)是一种具有高侵袭性和转移性的恶性肿瘤。采用Cox分析和Lasso回归分析逐步建立基于转移相关基因的预测模型,分析了风险评分与HCC患者的生存和临床特性的关系。构建了包含4个转移相关基因的预后模型。在TCGA训练集中,低风险组HCC患者的风险评分更低,死亡病例数更少,5年生存率更高(P < 0.01),Cox分析表明该模型可独立于其他临床特征预测HCC患者的生存(P < 0.01),时间依赖性ROC曲线预测分析1年、2年和3年的AUC值均大于0.74。同时,验证集获得与训练集一致的模型评估结果。最后,构建了肝癌转移相关基因的预后模型,有望成为一个独立的因素对HCC患者预后进行预测判断。Abstract: Hepatocellular carcinoma is a malignant tumor with high aggressiveness and metastasis. This study aims to construct a predictive model based on metastasis-related genes (MTGs). Cox analysis and Lasso regression analysis were used to build the prognostic model, and the relationship between the risk score of this model and the survival and clinical characteristics of hepatocellular carcinoma (HCC) patients was analyzed. The results of the study constructed a prognostic model containing four MTGs. In the the cancer genome atlas (TCGA) training set, HCC patients in the low-risk group had lower risk scores, fewer deaths and higher 5-year survival (P < 0.01), Cox analysis showed that the model could predict survival of HCC patients independently of other clinical characteristics (P < 0.01), and the AUC values of 1-, 2- and 3-years were all greater than 0.74 in the time-dependent ROC curve prediction analysis. Meanwhile, the validation set also confirmed the above results. Taken together, we constructed a MTGs prognostic model and it was expected to be an independent prognostic factor for prognostic prediction judgment of HCC patients.
-
Key words:
- hepatocellular carcinoma /
- metastasis-related genes /
- prognostic model /
- validation
-
表 1 经单因素Cox筛选得到的53个转移相关基因
基因名称 风险比 风险比95%置信区间上限 风险比95%置信区间下限 P ADAM12 1.244 1.099 1.407 0.001 KRT20 1.109 1.030 1.194 0.006 CHGA 1.212 1.100 1.335 P < 0.001 STC2 1.405 1.187 1.663 P < 0.001 FOXM1 1.320 1.120 1.556 0.001 SPP1 1.146 1.081 1.214 P < 0.001 CD24 1.137 1.040 1.242 0.005 MAGEA3 1.090 1.030 1.153 0.003 ESR1 0.809 0.723 0.905 P < 0.001 G6PD 1.474 1.287 1.689 P < 0.001 CCNB1 1.425 1.198 1.696 P < 0.001 KIF14 1.316 1.093 1.585 0.004 CDCA8 1.623 1.331 1.980 P < 0.001 CHAF1B 1.279 1.068 1.531 0.007 FANCD2 1.323 1.073 1.631 0.009 LIN28B 1.116 1.038 1.201 0.003 DEPDC1B 1.303 1.126 1.509 P < 0.001 EZH2 1.547 1.224 1.956 P < 0.001 STMN1 1.394 1.175 1.654 P < 0.001 UHRF1 1.315 1.114 1.553 0.001 MKI67 1.372 1.158 1.626 P < 0.001 ECT2 1.456 1.206 1.757 P < 0.001 RACGAP1 1.502 1.201 1.880 P < 0.001 TOP2A 1.275 1.107 1.469 0.001 KIF2C 1.492 1.258 1.770 P < 0.001 CCNA2 1.304 1.116 1.523 0.001 NDC80 1.483 1.216 1.808 P < 0.001 HMMR 1.347 1.127 1.609 0.001 PTTG1 1.270 1.098 1.469 0.001 UBE2C 1.300 1.128 1.498 P < 0.001 PLK1 1.440 1.210 1.714 P < 0.001 BIRC5 1.308 1.128 1.517 P < 0.001 CDK1 1.341 1.136 1.584 0.001 TPX2 1.526 1.274 1.829 P < 0.001 TACC3 1.414 1.161 1.722 0.001 CYP19A1 1.167 1.074 1.267 P < 0.001 SFN 1.140 1.044 1.244 0.004 UCHL1 1.129 1.039 1.226 0.004 CLDN18 1.175 1.049 1.316 0.005 CLEC1B 0.805 0.713 0.909 0.001 MMP12 1.161 1.063 1.267 0.001 CTHRC1 1.237 1.098 1.393 0.001 MMP1 1.333 1.182 1.504 P < 0.001 PITX2 1.179 1.069 1.300 0.001 MMP10 1.266 1.135 1.412 P < 0.001 KLK6 1.226 1.067 1.409 0.004 ETV4 1.159 1.052 1.276 0.003 GHR 0.782 0.699 0.874 P < 0.001 FOSB 0.866 0.778 0.965 0.009 PTPRR 0.766 0.639 0.919 0.004 HOXD9 1.162 1.045 1.291 0.005 XRCC2 1.317 1.086 1.598 0.005 IL1RL1 0.799 0.700 0.912 0.001 -
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492 [2] CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-32. doi: 10.3322/caac.21338 [3] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. doi: 10.1056/NEJMra1713263 [4] SIEGEL R L, MILLER K D, FEDEWA S A, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3): 177-193. doi: 10.3322/caac.21395 [5] DIMITROULIS D, DAMASKOS C, VALSAMI S, et al. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world[J]. World J Gastroenterol, 2017, 23(29): 5282-5294. doi: 10.3748/wjg.v23.i29.5282 [6] LAMBERT A W, PATTABIRAMAN D R, WEINBERG R A. Emerging biological principles of metastasis[J]. Cell, 2017, 168(4): 670-691. doi: 10.1016/j.cell.2016.11.037 [7] ZHANG X P, JIANG Y B, ZHONG C Q, et al. PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway[J]. Cell Physiol Biochem, 2018, 47(4): 1643-1654. doi: 10.1159/000490983 [8] LIN J, LIN W S, YE Y B, et al. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/beta-catenin signaling[J]. J Exp Clin Cancer Res, 2017, 36(1): 134. doi: 10.1186/s13046-017-0603-4 [9] 陈圣, 赵继森, 李靖华, 等. 肝细胞癌自噬相关长链非编码RNA预后模型的建立与分析[J]. 中国普通外科杂志, 2020, 29(7): 839-848. CHEN S, ZHAO J S, LI J H, et al. Construction and analysis of prognostic model for hepatocellular carcinoma based on autophagy-related long non-coding RNAs[J]. Chinese Journal of General Surgery, 2020, 29(7): 839-848. [10] LIU G M, ZENG H D, ZHANG C Y, et al. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma[J]. Cancer Cell Int, 2019, 19: 138. doi: 10.1186/s12935-019-0858-2 [11] LONG J Y, ZHANG L, WAN X S, et al. A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma[J]. J Cell Mol Med, 2018, 22(12): 5928-5938. doi: 10.1111/jcmm.13863 [12] ZHENG G T, MA Y J, ZOU Y, et al. HCMDB: The human cancer metastasis database[J]. Nucleic Acids Res, 2018, 46(D1): 950-955. doi: 10.1093/nar/gkx1008 [13] WANG H, MA X L, LIU J H, et al. Prognostic value of an autophagy-related gene expression signature for endometrial cancer patients[J]. Cancer Cell Int, 2020, 20: 306. doi: 10.1186/s12935-020-01413-6 [14] LYU X P, LI L L, LYU L, et al. HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 133. doi: 10.1186/s13046-015-0245-3 [15] WU M W, LI X B, LIU R, et al. Development and validation of a metastasis-related gene signature for predicting the overall survival in patients with pancreatic ductal adenocarcinoma[J]. J Cancer, 2020, 11(21): 6299-6318. doi: 10.7150/jca.47629 [16] ZHANG Q, LIU S, PARAJULI K R, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition[J]. Oncogene, 2017, 36(5): 687-699. doi: 10.1038/onc.2016.240 [17] WANG M N, DAI M L, WANG D, et al. The regulatory networks of the Hippo signaling pathway in cancer development[J]. J Cancer, 2021, 12(20): 6216-6230. doi: 10.7150/jca.62402 [18] LI Q Y, ZHOU X K, FANG Z Y, et al. Effect of STC2 gene silencing on colorectal cancer cells[J]. Mol Med Rep, 2019, 20(2): 977-984. [19] HOU J, WANG Z L, XU H, et al. Stanniocalicin 2 suppresses breast cancer cell migration and invasion via the PKC/claudin-1-mediated signaling[J]. PLoS One, 2015, 10(4): e0122179. doi: 10.1371/journal.pone.0122179 [20] WANG Y, WU J, XU J Y, et al. Clinical significance of high expression of stanniocalcin-2 in hepatocellular carcinoma[J]. Biosci Rep, 2019, 39(4): BSR20182057. doi: 10.1042/BSR20182057 [21] YANG S W, JI Q H, CHANG B, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling[J]. Oncotarget, 2017, 8(4): 5976-5991. doi: 10.18632/oncotarget.13355 [22] CHEN B, ZENG X, HE Y, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways[J]. Oncotarget, 2016, 7(44): 71400-71416. doi: 10.18632/oncotarget.12147 [23] BI Y Q, CHEN S, JIANG J Z, et al. CDCA8 expression and its clinical relevance in patients with bladder cancer[J]. Medicine (Baltimore), 2018, 97(34): e11899. doi: 10.1097/MD.0000000000011899 [24] CI C, TANG B, LYU D, et al. Overexpression of CDCA8 promotes the malignant progression of cutaneous melanoma and leads to poor prognosis[J]. Int J Mol Med, 2019, 43(1): 404-412. [25] HAYAMA S, DAIGO Y, YAMABUKI T, et al. Phosphorylation and activation of cell division cycle associated 8 by aurora kinase B plays a significant role in human lung carcinogenesis[J]. Cancer Res, 2007, 67(9): 4113-22. doi: 10.1158/0008-5472.CAN-06-4705 [26] DING X S, HUANG R H, ZHONG Y M, et al. CTHRC1 promotes gastric cancer metastasis via HIF-1alpha/CXCR4 signaling pathway[J]. Biomed Pharmacother, 2020, 123: 109742. doi: 10.1016/j.biopha.2019.109742 [27] LI L Y, YIN K M, BAI Y H, et al. CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway[J]. Clin Exp Metastasis, 2019, 36(4): 351-363. doi: 10.1007/s10585-019-09971-4 [28] LI N, CHEN L C, LIU C Y, et al. Elevated CTHRC1 expression is an indicator for poor prognosis and lymph node metastasis in cervical squamous cell carcinoma[J]. Hum Pathol, 2019, 85: 235-241. doi: 10.1016/j.humpath.2018.10.015 [29] NI S J, REN F, XU M D, et al. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Med, 2018, 7(11): 5643-5654. doi: 10.1002/cam4.1807 [30] GUO B Y, YAN H, LI L Y, et al. Collagen triple helix repeat containing 1 (CTHRC1) activates Integrin beta3/FAK signaling and promotes metastasis in ovarian cancer[J]. J Ovarian Res, 2017, 10(1): 69. doi: 10.1186/s13048-017-0358-8 [31] DAI B, ZHOU G H, HU Z Q, et al. MiR-205 suppresses epithelial-mesenchymal transition and inhibits tumor growth of human glioma through down-regulation of HOXD9[J]. Biosci Rep, 2019, 39(5): BSR20181989. doi: 10.1042/BSR20181989