-
以石墨烯(graphene)、氮化硼(h-BN)、过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)为代表的二维层状材料具有超薄的原子级厚度、优异的电学和力学[1-3]特性,在二维纳米电子领域引起了极大关注。基于二维材料的纳米机电系统谐振器(nano-electromechanical system resonator, NEMS resonator)是一种具有机械自由度的纳米电子器件[4-5]。纳米谐振器在物质探测、传感、射频信号处理等领域具有极大的研究潜力和应用价值[6]。二硒化钨(WSe2)是二维TMDCs家族成员中的一种具有代表性的半导体材料,因为WSe2不仅具有随层数、厚度可调的禁带宽度(单层WSe2禁带宽度为1.7 eV,多层WSe2禁带宽度为1.2 eV) [7-8];文献[9]研究得出单层WSe2的杨氏模量可以达到258 GPa,使其在纳米谐振器中具有很大优势。
制备二维纳米器件需要一系列实验,通常包括:1)制备所需的二维材料薄片;2)将二维材料转移到目标基底上;3)在二维材料上制备金属电极,便于进行电学测量。二维材料薄片的获得主要有两种途径:1)自底向上法,如化学气相沉积(chemical vapor deposition, CVD)法[10];2)自顶向下法,如机械剥离法[11]。机械剥离法操作简单、灵活、获得的二维晶体质量高,已成为二维纳米器件研究中最为广泛使用的方法。
二维材料的转移方法主要分为湿法转移和干法转移。湿法转移的过程为:在二维材料和基底上旋涂聚甲基丙烯酸甲酯(ploymethyl methacrylate, PMMA),接着将其放置到刻蚀溶液中(如FeCl3、NaOH等溶液)进行基底的刻蚀。完成基底的刻蚀之后,再将粘附二维材料的PMMA转移到新的基底上面,最后使用丙酮等有机物除去PMMA[12-13]。湿法转移适合大面积二维材料,不足之处是器件样品会受到一定的污染。因此,对于具有悬浮结构的纳米机电谐振器,不能利用湿法转移进行器件的制备。干法转移的过程为:将机械剥离的二维薄层材料粘附在聚二甲基硅氧烷(PDMS)表面,然后利用二维材料转移对准系统,借助于二维薄层材料与基底之间或二维薄层材料之间的范德华力(van der Waals force),直接在目标区域进行材料的“转移+堆叠”[14-15]。材料的干法转移具有灵活、高效等优点,且转移过程中不需要接触任何溶液试剂。对于环境敏感的二维材料,也能够在手套箱中进行干法转移操作。绝大多数情况下,对于纳米机电系统谐振器,只能通过干法转移手段制备器件。
二维材料转移完成后,需要进行金属电极的制备[16-17]。传统金属电极的制备需要旋涂PMMA,需要掩模版和二维材料之间的精确对准,还需要使用电子束曝光系统或者光刻系统等设备,电极制备过程也不可避免地需要使用丙酮等有机溶剂。在传统纳米器件制备工艺中,二维材料的转移和金属电极制备所需要的对准操作,通常都需要利用多套不同的设备实现。因此,从时间和空间的角度考虑,制备过程效率不高、操作不便。
本文基于干法转移技术在纳米机电谐振器制备研究中的独特优势,设计了二维纳米器件多功能制备系统。通过机械剥离法获得二维薄层材料,该多功能制备系统可以实现二维薄层材料的高效转移,以及金属淀积掩模版和二维薄层之间的高效对准,进而实现高质量金属电极的制备。该系统真正实现了纳米器件从干法转移到金属电极制备的高效、一体化工艺流程。基于该多功能制备系统,成功制备了基于WSe2的纳米谐振器[18],并对器件进行了拉曼光学表征以及幅频特性的测试。
Fast Prototyping of Two-Dimensional Nanoelectromechanical Resonators
-
摘要: 设计并实现了一种二维纳米器件多功能制备系统,该系统不仅能够完成二维材料的高效转移,还能够实现金属电极的准确淀积,从而实现二维器件的高效、一体化制备。利用该系统,成功制备了基于二维半导体的纳米机电谐振器,并对器件进行了机电谐振幅频特性的测试。研究结果表明,设计的二维纳米器件多功能制备系统在纳米谐振器制备与研究中极具潜力。Abstract: In this work, we report a multifunctional system for facile fabrication of 2D nanodevices. The system has advantages of achieving both the transfer process and electrodes deposition all using the same setup, and thus can efficiently prototyping nanodevices. Using this multifunctional fabrication system, we successfully fabricate WSe2 resonators and then measure the device performance. Our work shows great potential in realizing resonant 2D devices using this multifunctional nanodevice fabrication system.
-
[1] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102 [2] BHIMANAPATI G R, KOZUCH D, ROBINSON J A. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets[J]. Nanoscale, 2014, 6(20): 11671-11675. doi: 10.1039/C4NR01816H [3] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193 [4] LEE J, WANG Z, HE K, et al. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 2013, 7(7): 6086-6091. doi: 10.1021/nn4018872 [5] LEE J, WANG Z, HE K, et al. Electrically tunable single-and few-layer MoS2 nanoelectromechanical systems with broad dynamic range[J]. Science Advances, 2018, 4(3): eaao6653. doi: 10.1126/sciadv.aao6653 [6] BUNCH J S, VANDERZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493. doi: 10.1126/science.1136836 [7] FANG H, CHUANG S, CHANG T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Letters, 2012, 12(7): 3788-3792. doi: 10.1021/nl301702r [8] LIU W, KANG J, SARKAR D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors[J]. Nano Letters, 2013, 13(5): 1983-1990. doi: 10.1021/nl304777e [9] FALIN A, HOLWILL M, LYU H, et al. Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2[J]. ACS Nano, 2021, 15(2): 2600-2610. doi: 10.1021/acsnano.0c07430 [10] LEE J H, LEE E K, JOO W J, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium[J]. Science, 2014, 344(6181): 286-289. doi: 10.1126/science.1252268 [11] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi: 10.1038/nnano.2010.279 [12] REINA A, SON H, JIAO L, et al. Transferring and identification of single-and few-layer graphene on arbitrary substrates[J]. The Journal of Physical Chemistry C, 2008, 112(46): 17741-17744. doi: 10.1021/jp807380s [13] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. doi: 10.1126/science.1171245 [14] YANG R, ZHENG X, WANG Z, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2014, 32(6): 061203. [15] FRISENDA R, NAVARRO-MORATALLA E, GANT P, et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials[J]. Chemical Society Reviews, 2018, 47(1): 53-68. doi: 10.1039/C7CS00556C [16] LATE D J, LIU B, MATTE H S S R, et al. Hysteresis in single-layer MoS2 field effect transistors[J]. ACS Nano, 2012, 6(6): 5635-5641. doi: 10.1021/nn301572c [17] KIM S, KONAR A, HWANG W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals[J]. Nature Communications, 2012, 3(1): 1-7. [18] MORELL N, RESERBAT-PLANTEY A, TSIOUTSIOS I, et al. High quality factor mechanical resonators based on WSe2 monolayers[J]. Nano Letters, 2016, 16(8): 5102-5108. doi: 10.1021/acs.nanolett.6b02038 [19] SIERRA-CASTILLO A, HAYE E, ACOSTA S, et al. Synthesis and characterization of highly crystalline vertically aligned WSe2 nanosheets[J]. Applied Sciences, 2020, 10(3): 874. doi: 10.3390/app10030874 [20] LI H, LU G, WANG Y, et al. Mechanical exfoliation and characterization of single‐ and few‐layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981. doi: 10.1002/smll.201202919