-
1999年,美国哈佛大学医学院RalphWeissleder教授首次提出了分子影像的概念。即利用传统成像模态对生物体内有标记或无标记的特定分子进行细胞或分子水平的在体成像,追踪和检测其在生物体内的运动和变化,揭示生理和病理特征[1]。分子影像成像模态通常分为宏观分子成像和微观分子成像。目前,常用于脑成像的宏观分子成像技术包括:X射线成像(X-ray)、计算机断层扫描成像(computed tomography, CT)、磁共振成像(magnetic resonance imaging, MRI)、正电子发射断层扫描成像(positron emission tomography, PET)、单光子发射计算机断层扫描成像(single-photon emission computed tomography, SPECT)和超声成像(ultrasonic imaging, USI)等模态[2]。常用微观分子脑成像技术有:激光共聚焦显微成像、光学分子成像,如多光子成像(multiphoton microscopy, MPM)、光谱成像(spectral imaging, SI)、近红外光谱技术(near-infrared spectroscopy, NIRS)、扩散光学层析成像(diffuse optical tomography, DOT)、光声成像(photoacoustic imaging, PAI)以及与其相似的微波诱导热声成像(microwave-induced thermoacoustic imaging, MI-TAI),简称微波热声成像(TAI)[3]。
X-ray和CT成像的优点是对高密度组织(如颅骨)的成像灵敏度高、分辨率高,可用于诊断是否存在颅内出血、颅内压增加等病症。CT血管造影(CTA)能显示大脑各动脉及其主要分支,空间分辨率小于1 mm,成像对比度高。X-ray和CT成像的主要缺点是对低密度软组织灵敏度低,成像速度慢,设备昂贵,存在电离辐射对人体有损伤[4]。
磁共振成像(MRI)的优点是非侵入性、成像分辨率高,对低密度软组织具有较高的灵敏度,适用于多种人脑疾病的诊断。血氧水平依赖对比功能磁共振成像法(blood oxygen level dependent functional magnetic resonance imaging, BOLD-fMRI)已经被用于绘制工作、记忆、语言、运动、情感等复杂人脑认知活动图谱。MRI成像对比度高、成像深度不受限,但同时也存在着成像速度慢、设备庞大不可携带、成像成本高昂、设备运行时噪声污染严重对患者不友好以及排斥患者体内金属部件等缺点[5]。
PET可定量测定脑灌注参数,如脑血流量(cerebral blood flow, CBF)、脑血容量(cerebral blood volume, CBV)和葡萄糖代谢等指标。但PET的分辨率和对病灶的定位准确性存在局限,且设备笨重、成本高,存在电离辐射危害[6]。SPECT是另一种核医学成像技术,与PET相比采用不同的放射性示踪剂,如99mTc(锝)、133Xe(氙)等。SPECT脑成像可用于显示脑组织的形态学病理特征,也可测定CBF、CBV等氧代谢指标。SPECT设备成本高,具有电离辐射危害,成像过程操作复杂、难度较大[7]。
超声成像(USI)是一种临床上广泛使用的检测手段,具有设备小巧、操作简便、空间分辨率高、成像深度好的优点,并且能实时成像、成像成本低。USI对肌肉、关节、血管等软组织和骨骼表面结构成像效果良好,但因脑组织与颅骨的声阻抗差异巨大,超声难以穿透颅骨,导致成人脑组织成像对比度较差[8]。
本文总结了几种可用于脑成像的微观光学分子成像技术,包括MPM、SI、NIRS、DOT、PAI以及TAI。给出并讨论了它们的成像原理、关键技术以及发展现状。最后,在综合了当下以及未来的科学研究和临床应用需求的情况下,对脑成像技术的发展方向进行了展望。
Progress Of Biophotonics Technology in Brain Function Research
-
摘要: 脑成像技术是生物医学工程学研究的热点。现有传统脑成像手段,如X射线成像(X-ray)、磁共振成像(MRI)等已发展成熟,广泛应用于科学研究和临床诊疗。然而这些成像技术大多具有侵入性、设备体积庞大、成像成本高昂等局限性,且难以适用于特殊人群,如新生儿。该文介绍了几种可用于脑成像的微观光学分子成像模态,这些方法大多无创、成本较低且性能优异,具有广阔的发展前景。在给出了它们的成像原理、系统组成以及关键技术后,总结了已有的研究成果和现阶段研究进展。最后,通过列举和比较这几种成像模态的优缺点讨论了脑成像技术未来的发展方向。Abstract: Brain imaging is a hot spot field in the biomedical engineering research. Current traditional brain imaging modalities, such as X-ray, magnetic resonance imaging (MRI) and other methods, are mature and have been widely applied for scientific research and clinical diagnosis and treatment comprehensively. However, most of these imaging techniques have limitations such as invasiveness, bulky equipment, and high imaging costs, and are difficult to apply to special populations, such as neonates. This paper introduces several microscopic optical molecular imaging modalities that can be used for brain imaging. Most of these methods are non-invasive, low-cost and excellent in performance, and have broad development prospects. After giving their imaging principles, system components, and key techniques, the existing research results and the current state of these imaging modalities are summarized. Finally, the future development directions of the brain imaging techniques are discussed through enumerating and comparing the merits and limitations among these imaging modalities.
-
[1] WEISSLEDER R. Molecular imaging: Exploring the next frontier[J]. Radiology, 1999, 212(3): 609-614. doi: 10.1148/radiology.212.3.r99se18609 [2] WEISSLEDER R, PITTET M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589. doi: 10.1038/nature06917 [3] DARNE C, LU Y, SEVICK-MURACA E M. Small animal fluorescence and bioluminescence tomography: A review of approaches, algorithms and technology update[J]. Physics in Medicine & Biology, 2013, 59(1): R1. [4] QIN D L. Overview of microct with much morehigher spare resolution than normal ct[J]. China Medical Devices Information 2003, 9(5): 27-29. [5] WU D, ZHANG J. Recent progress in magnetic resonance imaging of the embryonic and neonatal mouse brain[J]. Frontiers in Neuroanatomy, 2016, 10: 18. [6] ERMAKOVA O, ORSINI T, GAMBADORO A, et al. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: Application for phenotyping analysis of early embryonic lethality in mutant animals[J]. Mamm Genome, 2018, 29(3-4): 245-259. doi: 10.1007/s00335-017-9723-6 [7] STAM M K, VERWER E E, BOOIJ J, et al. Performance evaluation of a novel brain-dedicated SPECT system[J]. Ejnmmi Physics, 2018, 5(1): 4. doi: 10.1186/s40658-018-0203-1 [8] EYDING J, WILKENING W, POSTERT T. Brain perfusion and ultrasonic imaging techniques[J]. European Journal of Ultrasound, 2002, 16(1-2): 91-104. doi: 10.1016/S0929-8266(02)00042-3 [9] GÖPPERT-MAYER M. Elementary processes with two quantum transitions[J]. Annalen Der Physik, 2009, 18(7-8): 466-479. doi: 10.1002/andp.200952107-803 [10] 崔权, 陈忠云, 张智红, 等. 多色双光子成像技术进展[J]. 激光与光电子学进展, 2017, 54(6): 060002. CUI Q, CHEN Z Y, ZHANG Z H, et al. Recent advances in multicolor two-photon imaging technique[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060002. [11] LI S, GENG J X, LI Y, et al. New advances in biomedical applications of multiphoton imaging technology[J]. Acta Physica Sinica, 2020, 69: 228702. doi: 10.7498/aps.69.20201039 [12] SANTISAKULTARM T P, KERSBERGEN C J, BANDY D K, et al. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets[J]. Journal of Neuroscience Methods, 2016, 271: 55-64. doi: 10.1016/j.jneumeth.2016.07.003 [13] ABDELADIM L, MATHO K S, CLAVREUL S, et al. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy[J]. Nature Communications, 2019, 10(1): 1662. doi: 10.1038/s41467-019-09552-9 [14] TYURIKOVA O, ZHENG K, RINGS A, et al. Monitoring Ca2+ elevations in individual astrocytes upon local release of amyloid beta in acute brain slices[J]. Brain Research Bulletin, 2018, 136: 85-90. doi: 10.1016/j.brainresbull.2016.12.007 [15] CHAKRABORTY S, NIAN F S, TSAI J W, et al. Quantification of the metabolic state in cell-model of parkinson's disease by fluorescence lifetime imaging microscopy[J]. Scientific Reports, 2016, 6: 19145. doi: 10.1038/srep19145 [16] LEE C M, ENGELBRECHT C J, SOPER T D, et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging[J]. Journal of Biophotonics, 2010, 3(5-6): 385-407. doi: 10.1002/jbio.200900087 [17] OUZOUNOV D G, WANG T, WANG M, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 2017, 14(4): 388. doi: 10.1038/nmeth.4183 [18] NI H, XU Z, LI D, et al. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1940005. doi: 10.1142/S1793545819400054 [19] LIU H, DENG X, TONG S, et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots[J]. Nano Letters, 2019, 19(8): 5260-5265. doi: 10.1021/acs.nanolett.9b01708 [20] GARINI Y, YOUNG I T, MCNAMARA G. Spectral imaging: Principles and applications[J]. Cytometry Part A, 2010, 69A(8): 735-747. [21] 马雪洁. 基于多光谱成像的在体组织检测方法研究[D]. 天津: 天津大学, 2019. MA X J. Research on detection method of in vivo tissue based on multispectral imaging[D]. Tianjin: Tianjin University, 2019. [22] LUCKL J, BAKER W, SUN Z H, et al. The biological effect of contralateral forepaw stimulation in rat focal cerebral ischemia: A multispectral optical imaging study[J]. Frontiers in Neuroenergetics, 2010, 2: 19. [23] NISHIDATE I, MUSTARI A, KAWAUCHI S, et al. Simultaneous evaluation of cerebral hemodynamics and light scattering properties of the in vivo rat brain using multispectral diffuse reflectance imaging[J]. JoVE (Journal of Visualized Experiments), 2017(123): e55399. [24] 王与烨, 孙忠成, 徐德刚, 等. 基于太赫兹时域光谱系统的脑缺血检测[J]. 光学学报, 2020, 40(4): 0430001. doi: 10.3788/AOS202040.0430001 WANG Y Y, SUN Z C, XU D G, et al. Detection of cerebral ischemia based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 2020, 40(4): 0430001. doi: 10.3788/AOS202040.0430001 [25] 刘立新, 李梦珠, 赵志刚, 等. 高光谱成像技术在生物医学中的应用进展[J]. 中国激光, 2018, 45(2): 0207017. doi: 10.3788/CJL201845.0207017 LIU L X, LI M Z, ZhAO Z G, et al. Recent advances of hyperspectral imaging application in biomedicine[J]. Chinese Journal of Lasers, 2018, 45(2): 0207017. doi: 10.3788/CJL201845.0207017 [26] GIANNONI L, LANGE F, TACHTSIDIS I. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: Past, current and future developments[J]. Journal of Optics, 2018, 20(4): 044009. doi: 10.1088/2040-8986/aab3a6 [27] FU C, MA K, LI Z, et al. Rapid, label-free detection of cerebral ischemia in rats using hyperspectral imaging[J]. Journal of Neuroscience Methods, 2020, 329: 108466. doi: 10.1016/j.jneumeth.2019.108466 [28] GIANNONI L, LANGE F, SAJIC M, et al. A hyperspectral imaging system for mapping haemoglobin and cytochrome-c-oxidase concentration changes in the exposed cerebral cortex[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(4): 1-11. [29] JOBSIS F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267. doi: 10.1126/science.929199 [30] DELPY D T, COPE M, ZEE P, et al. Estimation of optical pathlength through tissue from direct time of flight measurement[J]. Physics in Medicine & Biology, 1988, 33(12): 1433. [31] CHANCE B, MARIS M B, SORGE J, et al. Phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues[C]//Time-Resolved Laser Spectroscopy in Biochemistry II, OE/LASE '90. Los Angeles: SPIE, 1990, 1204: 481-491. [32] VILLRINGER A, CHANCE B. Non-invasive optical spectroscopy and imaging of human brain function[J]. Trends in Neurosciences, 1997, 20(10): 435-442. doi: 10.1016/S0166-2236(97)01132-6 [33] NOVI S L, ROBERTS E, SPAGNUOLO D, et al. Functional near-infrared spectroscopy for speech protocols: characterization of motion artifacts and guidelines for improving data analysis[J]. Neurophotonics, 2020, 7(1): 1-15. [34] GIBSON A P, AUSTIN T, EVERDELL N L, et al. Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate[J]. Neuroimage, 2006, 30(2): 521-528. doi: 10.1016/j.neuroimage.2005.08.059 [35] LUO Q, NIOKA S, CHANCE B. Functional near-infrared imager[C]//Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II. BIOS '97, Part of Photonics WEST. San Jose: SPIE, 1997, 2979: 84-93. [36] LIU J, LIU R, XU K. Accuracy of noninvasive glucose sensing based on near-infrared spectroscopy[J]. Applied Spectroscopy, 2015, 69(11): 1313-1318. doi: 10.1366/14-07728 [37] 李成军. 近红外光谱技术用于前额叶皮层工作记忆作用的研究[D]. 武汉: 华中科技大学, 2005. LI C J. On the prefrontal cortex function in working memory with near-infrared spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2005 [38] 周菘. 中英文言语流畅性任务的语言间差异的fNIRS研究[D]. 天津: 天津师范大学, 2015. ZHOU S. Brain activation pattern difference between Chinese and English verbal fluency task: An fNIRS Study[D]. Tianjin: Tianjin Normal University, 2015. [39] 邹雨晨, 李燕芳, 丁颖. 早期高级认知发展与前额叶功能发育的fNIRS研究[J]. 心理发展与教育, 2015, 31(6): 761-768. doi: 10.16187/j.cnki.issn1001-4918.2015.06.16 ZOU Y C, LI Y F, DING Y. fNIRS studies of the development of early advanced cognitive ability and prefrontal function[J]. Psychological Development and Education, 2015, 31(6): 761-768. doi: 10.16187/j.cnki.issn1001-4918.2015.06.16 [40] VANDERWERT R E, NELSON C A. The use of near-infrared spectroscopy in the study of typical and atypical development[J]. Neuroimage, 2014, 85(1): 264-271. [41] LI R, NGUYEN T, POTTER T, et al. Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study[J]. NeuroImage: Clinical, 2019, 21: 101622. doi: 10.1016/j.nicl.2018.101622 [42] STUART S, VITORIO R, MORRIS R, et al. Cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease: A structured review[J]. Maturitas, 2018, 113: 53-72. doi: 10.1016/j.maturitas.2018.04.011 [43] HUSAIN S F, YU R, TANG T B, et al. Validating a functional near-infrared spectroscopy diagnostic paradigm for major depressive disorder[J]. Scientific Reports, 2020, 10(1): 9740. doi: 10.1038/s41598-020-66784-2 [44] KUMAR V, SHIVAKUMAR V, CHHABRA H, et al. Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review[J]. Asian Journal of Psychiatry, 2017, 27: 18-31. doi: 10.1016/j.ajp.2017.02.009 [45] LIAO J, LI T, DONG W, et al. Reduced prefrontal-temporal cortical activation during verbal fluency task in obsessive-compulsive disorder: A multi-channel near-infrared spectroscopy study[J]. Journal of Psychiatric Research, 2018, 109: 33-40. [46] ZHANG F, ROEYERS H. Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies[J]. International Journal of Psychophysiology, 2019, 137: 41-53. doi: 10.1016/j.ijpsycho.2019.01.003 [47] HUPPERT T J, DIAMOND S G, FRANCESCHINI M A, et al. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain[J]. Applied Optics, 2009, 48(10): D280-D298. doi: 10.1364/AO.48.00D280 [48] 周振宇, 杨宏宇, 龚辉, 等. 基于希尔伯特-黄变换的近红外脑功能成像信号分析[J]. 光学学报, 2007, 27(2): 307-312. doi: 10.3321/j.issn:0253-2239.2007.02.022 ZHOU Z Y, YANG H Y, GONG H, et al. Brain signal analysis of functional near-infrared imaging based on Hilbert-Huang transform[J]. Acta Optica Sinica, 2007, 27(2): 307-312. doi: 10.3321/j.issn:0253-2239.2007.02.022 [49] KE Z, JI Y, LI Y, et al. Online removal of baseline shift with a polynomial function for hemodynamic monitoring using near-infrared spectroscopy[J]. Sensors, 2018, 18(1): 312. doi: 10.3390/s18010312 [50] 郑毅. 基于连续光的便携式近红外脑功能成像系统的研制[D]. 武汉: 华中科技大学, 2006. ZHENG Y. Development of a Portable continuous-wave NIR instrument for brain function imagin[D]. Wuhan: Huazhong University of Science and Technology, 2006. [51] 余坚. 多通道脑血氧检测系统设计[D]. 成都: 电子科技大学, 2015. YU J. Multi-channel brain blood oxygen detecting system[D]. Chengdu: University of Electronic Science and Technology of China, 2015. [52] 张岩. 基于近红外光谱技术的脑功能活动信号提取方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. ZHANG Y. Study of signal extraction method in brain activity measurement by near infrared spectroscopy[D]. Harbin: Harbin Institute of Technology, 2012. [53] 孟伟. 基于多通道数字锁相系统的脑功能光学成像相关研究[D]. 天津: 天津大学, 2014. MENG W. Near-Infrared functional brain imaging studies based on multi-channel digital lock-in detection system[D]. Tianjin: Tianjin University, 2014. [54] YAMADA Y, OKAWA S. Diffuse optical tomography: Present status and its future[J]. Optical Review, 2014, 21(3): 185-205. doi: 10.1007/s10043-014-0028-7 [55] ISHIMARU A. Wave propagation and scattering in random media[J]. Proceedings of the IEEE, 1991, 79(10): 1359-1366. doi: 10.1109/5.104210 [56] ARRIDGE S R. Optical tomography in medical imaging[J]. Inverse Problems, 1999, 15(2): R41. doi: 10.1088/0266-5611/15/2/022 [57] 阮平巧. 基于形状的扩散光学层析成像理论与技术研究[D]. 天津: 天津大学, 2010. RUAN P Q. Investigations on shape-based diffuse optical tomography: Theory and methodology[D]. Tianjin: Tianjin University, 2010. [58] SCHWEIGER M, ARRIDGE S R, NISSILÄ I. Gauss-Newton method for image reconstruction in diffuse optical tomography[J]. Physics in Medicine & Biology, 2005, 50(10): 2365. [59] ARRIDGE S, SCHWEIGER M. A gradient-based optimisation scheme for optical tomography[J]. Optics Express, 1998, 2(6): 213-226. doi: 10.1364/OE.2.000213 [60] 王兵元, 陈玮婷, 马文娟, 等. 基于非负约束L1-范数正则化的乳腺扩散光学层析成像重建方法[J]. 光学学报, 2016, 36(11): 1117002. doi: 10.3788/AOS201636.1117002 WANG B Y, CHEN W T, MA W J, et al. Reconstruction method of breast diffuse optical tomography based on non-negative-constraint l1-norm regularization[J]. Acta Optica Sinica, 2016, 36(11): 1117002. doi: 10.3788/AOS201636.1117002 [61] TONG S, HAN B, LONG H, et al. An accelerated sequential subspace optimization method based on homotopy perturbation iteration for nonlinear ill-posed problems[J]. Inverse Problems, 2019, 35(12): 125005. doi: 10.1088/1361-6420/ab4611 [62] XU Q, WANG X, JIANG H. Convolutional neural network for breast cancer diagnosis using diffuse optical tomography[J]. Visual Computing for Industry, Biomedicine and Art, 2019, 2(1): 6. doi: 10.1186/s42492-019-0015-8 [63] ARRIDGE S R, LIONHEART W. Nonuniqueness in diffusion-based optical tomography[J]. Optics Letters, 1998, 23(11): 882-884. doi: 10.1364/OL.23.000882 [64] JOSEPH D K, HUPPERT T J, FRANCESCHINI M A, et al. Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging[J]. Applied optics, 2006, 45(31): 8142-8151. doi: 10.1364/AO.45.008142 [65] CHITNIS D, COOPER R J, DEMPSEY L, et al. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system[J]. Biomedical Optics Express, 2016, 7(10): 4275-4288. doi: 10.1364/BOE.7.004275 [66] 苏黎, 熊志豪, 杨浩, 等. 一种低成本, 高性价比的穿戴式扩散光学断层人脑成像系统[J]. 生物化学与生物物理进展, 2020, 47(5): 439-447. SU L, XIONG Z H, YANG H, et al. A low-cost high performance-to-price ratio wearable diffuse optical tomography system for human brain imaging[J]. Progress in Biochemistry and Biophysics, 2020, 47(5): 439-447. [67] ZEFF B W, WHITE B R, DEHGHANI H, et al. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography[J]. Proceedings of the National Academy of Sciences, 2007, 104(29): 12169-12174. doi: 10.1073/pnas.0611266104 [68] HABERMEHL C, HOLTZE S, STEINBRINK J, et al. Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography[J]. Neuroimage, 2012, 59(4): 3201-3211. doi: 10.1016/j.neuroimage.2011.11.062 [69] HASSANPOUR M S, EGGEBRECHT A T, PEELLE J E, et al. Mapping effective connectivity within cortical networks with diffuse optical tomography[J]. Neurophotonics, 2017, 4(4): 041402. doi: 10.1117/1.NPh.4.4.041402 [70] FISHELL A K, BURNS-YOCUM T M, BERGONZI K M, et al. Mapping brain function during naturalistic viewing using high-density diffuse optical tomography[J]. Scientific Reports, 2019, 9(1): 11115. doi: 10.1038/s41598-019-45555-8 [71] LANCIA S, COFINI V, CARRIERI M, et al. Are ventrolateral and dorsolateral prefrontal cortices involved in the computerized Corsi block-tapping test execution? An fNIRS study[J]. Neurophotonics, 2018, 5(1): 011019. [72] SHEKHAR S, MARIA A, KOTILAHTI K, et al. Hemodynamic responses to emotional speech in two-month-old infants imaged using diffuse optical tomography[J]. Scientific Reports, 2019, 9(1): 4745. doi: 10.1038/s41598-019-39993-7 [73] CHANCE B. A novel method for fast imaging of brain function, non-invasively, with light[J]. Optics Express, 1998, 2(10): 411-423. doi: 10.1364/OE.2.000411 [74] CHALIA M, DEMPSEY L A, COOPER R J, et al. Diffuse optical tomography for the detection of perinatal stroke at the cot side: A pilot study[J]. Pediatric Research, 2019, 85(7): 1001-1007. doi: 10.1038/s41390-018-0263-x [75] SMYSER C D, WHEELOCK M, LIMBRICK D D, et al. Neonatal brain injury and aberrant connectivity[J]. NeuroImage, 2018, 185: 609-623. [76] MARTINEZ B M, DIEZ S J, KAPELLOU O, et al. Iconography: Predicting motor outcome and death in term hypoxic-ischemic encephalopathy[J]. Neurology, 2011, 76(24): 2055-2061. doi: 10.1212/WNL.0b013e31821f442d [77] SINGH H, COOPER R J, LEE C W, et al. Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study[J]. Neuroimage Clinical, 2014, 5(C): 256-265. [78] CHALIA M, LEE C W, DEMPSEY L A, et al. Hemodynamic response to burst-suppressed and discontinuous electroencephalography activity in infants with hypoxic ischemic encephalopathy[J]. Neurophotonics, 2016, 3(3): 031408. [79] WHITE B R, SNYDER A Z, COHEN A L, et al. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography[J]. Neuroimage, 2009, 47(1): 148-156. doi: 10.1016/j.neuroimage.2009.03.058 [80] FERRADAL S L, LIAO S M, EGGEBRECHT A T, et al. Functional imaging of the developing brain at the bedside using diffuse optical tomography[J]. Cerebral Cortex, 2016, 4: 1558-1568. [81] KHAN A F, ZHANG F, YUAN H, et al. Brain-wide functional diffuse optical tomography of resting state networks[J]. Journal of Neural Engineering, 2021, 18(4): 046069. doi: 10.1088/1741-2552/abfdf9 [82] ZHANG L, CAO B, HE X, et al. High-Sensitive multiwavelength dynamic diffuse optical tomography system: A preliminary investigation[J]. Frontiers in Physics 2020, 8: 600812. [83] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880(118): 305-324. doi: 10.2475/ajs.s3-20.118.305 [84] PALTAUF G, NUSTER R, FRENZ M. Progress in biomedical photoacoustic imaging instrumentation toward clinical application[J]. Journal of Applied Physics, 2020, 128(18): 180907. doi: 10.1063/5.0028190 [85] WANG L V. Tutorial on photoacoustic microscopy and computed tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 171-179. doi: 10.1109/JSTQE.2007.913398 [86] LEI L, ZHU L, CHENG M, et al. Single-Impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 2017, 1(5): 1-11. [87] ZHANG P, LI L, LIN L, et al. High-Resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo[J]. Journal of Biophotonics, 2018, 11(1): e201700024. doi: 10.1002/jbio.201700024 [88] OLEFIR I, GHAZARYAN A, YANG H, et al. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomography[J]. Cell Reports, 2019, 26(10): 2833-2846. doi: 10.1016/j.celrep.2019.02.020 [89] JIN T, QI W, LIANG X, et al. Photoacoustic imaging of brain functions: Wide filed-of-view functional imaging with high spatiotemporal resolution[J]. Laser & Photonics Reviews, 2022(2): 2100304. [90] QIN W, GAN Q, YANG L, et al. High-Resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy[J]. NeuroImage, 2021, 238: 118260. doi: 10.1016/j.neuroimage.2021.118260 [91] TANG J B, XI L, ZHOU J, et al. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. Journal of cerebral blood flow and metabolism[J]. Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2015, 35(8): 1224-1232. doi: 10.1038/jcbfm.2015.138 [92] SHAN T, ZHAO Y, JIANG S, et al. In-Vivo hemodynamic imaging of acute prenatal ethanol exposure in fetal brain by photoacoustic tomography[J]. Journal of Biophotonics, 2020, 13(5): e201960161. [93] HERRMANN S, PETROV I Y, PETROV Y, et al. Cerebral blood oxygenation measurements in neonates with optoacoustic technique[C]//Photons Plus Ultrasound: Imaging and Sensing 2017. SPIE BiOS. San Francisco: SPIE, 2017, 10064: 117-123. [94] DANGI A, ROY K, AGRAWAL S, et al. A modular approach to neonatal whole-brain photoacoustic imaging[C]//Photons Plus Ultrasound: Imaging and Sensing 2020. SPIE BiOS. San Francisco: SPIE, 2020, 11240: 317-325. [95] YAO J, XIA J, MASLOV K I, et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo[J]. Neuroimage, 2013, 64(1): 257-266. [96] KRUGER R A, REINECKE D R, KRUGER G A. Thermoacoustic computed tomography–technical considerations[J]. Medical Physics, 1999, 26(9): 1832-1837. doi: 10.1118/1.598688 [97] WANG L V, ZHAO X, SUN H, et al. Microwave-Induced acoustic imaging of biological tissues[J]. Review of Scientific Instruments, 1999, 70(9): 3744-3748. doi: 10.1063/1.1149986 [98] YUAN X, WANG L. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(3): 542-548. doi: 10.1109/TUFFC.2006.1610562 [99] LIN H, LI T, JIANG H. Technical note: Thermoacoustic imaging of hemorrhagic stroke: A feasibility study with a human skull[J]. Medical Physics, 2017, 44(4): 1494-1499. doi: 10.1002/mp.12138 [100] YAN A, LIN L, LIU C, et al. Microwave‐Induced thermoacoustic tomography through an adult human skull[J]. Medical Physics, 2019, 46(4): 1793-1797. doi: 10.1002/mp.13439 [101] ZHAO Y, SHAN T, CHI Z, et al. Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum[J]. Journal of X-Ray Science and Technology, 2019, 28(1): 1-11. [102] SU L, XU S Z, HUANG Y X, et al. Developing a near-infrared spectroscopy and microwave-induced thermoacoustic tomography-based dual-modality imaging system[J]. Review of Scientific Instruments, 2021, 92(12): 124901. doi: 10.1063/5.0067878
计量
- 文章访问数: 8929
- HTML全文浏览量: 3800
- PDF下载量: 73
- 被引次数: 0