-
紫外探测技术主要分为两类:1)基于PN结构成的光电探测器,如宽禁带纳米结构半导体、二氧化钛和氧化锌等[1-4],已被证明可以在紫外光下发生光电反应,然而这些半导体器件大多有缺点,如制备工艺复杂;2)基于紫外敏感的光致变色染料,因为光驱动的可逆键裂解可以在紫外线辐射下快速着色,如紫外光反应燃料(CR234-BT2B)在紫外光照下从蓝色变为透明。目前一些光致变色染料以产品形式在逐步进入商业市场,如Smartsun和欧莱雅的UV贴片[5-8]。然而通过颜色变化判断紫外曝光量准确度不高。本文研究以有机聚合物作为光敏材料,通过检测光敏材料在紫外光辐射前后的电阻变化,并通过叉指电极传导电信号,实现对紫外光辐射量的精确测量。
叉指电极(interdigitated electrodes, IDT)是指状或梳状的面内周期性图案电极,它具有阻抗可降低、稳定性高、稳态信号建立快、可微型化便携、信噪比高等优点,被广泛应用于传感检测领域[9-13]。现有理论研究表明,叉指电极的结构设计是影响传感性能的重要因素,包括叉指电极对的对数、宽度、相邻叉指间的间隙距离以及厚度4个主要参数。这4个参数决定了基于叉指电极的生化传感器的传感性能[14-16]。同时根据本课题组以往相关研究[17]发现,在紫外传感器中引入叉指电极可以提升检测灵敏度、响应速度,降低初始电阻值。
本文在保证传感器灵敏度和响应速度等性能的前提下,为进一步降低其初始电阻,解决后端电路难以读出微弱电信号的问题,通过COMSOL Multiphysics多物理场仿真软件,建立紫外传感贴片的近似三维模型,从叉指电极的相关结构参数出发对其传导性能进行仿真优化[18-22],并试图找出一种较叉指电极具有更低初始电阻的电极结构,为柔性紫外传感贴片的后端电路开发提供参考。
-
本文采用COMSOL Multiphysics软件5.5版本对IDT进行结构仿真。均匀叉指的平面结构如图1所示。
在三维空间下添加AC/DC模块下的电流物理场接口,再选择稳态研究,最后利用几何选项直接构建包含IDT的紫外传感贴片模型,并设置具有空气参数的圆柱体(黄色部分)模拟周围环境,如图2所示。图中,圆柱体外层被定义为无限空气元域,且已将圆柱体内层和外层部分边界隐藏。
为更好地接近实际情况,本文设计了5种近似传感器模型,并对每种模型的电势分布和电阻值进行分析和比较,最终选择化学材料与IDT相交叠(化学材料的多少将随IDT的结构变化而变化),IDT空隙与聚酰亚胺基底相交的模型进行仿真,如图3所示,为方便观察,已利用视图选项,将z轴比例放大10倍。
在图3中,传感贴片的基底为聚酰亚胺(棕色部分),长2000 μm,宽1500 μm,厚100 μm;基底之上是石墨烯材质的均匀IDT(绿色部分),其结构参数见表1;IDT的上层为光敏化学材料(橙色部分),长2000 μm,宽1500 μm,厚20 μm。
表 1 均匀IDT结构参数
对数/对 指宽/mm 间距/mm 厚度/μm 指长/mm 8 0.6 0.6 10 10 建立好传感器三维模型之后,传感贴片的材料参数设置如表2所示。为系统研究IDT的指宽、间距和厚度参数对IDT传导性能的具体影响,本文共设置了13组参数进行对比研究,具体的参数设置如表3所示。利用控制单一变量的方法,不同参数间形成对照,观察参数的变化对传导性能的影响。
表 2 材料仿真参数
材料 模拟对象 电导率σ/S·m−1 相对介电常数εr 空气 周边环境 10−20 1 聚酰亚胺 柔性基底 5×10−15 3.4 石墨烯 电极 108 {4,4,5} 有机聚合物 光敏化学材料 10−11 5 表 3 参数对照组
叉指长度/mm 叉指宽度/mm 叉指间距/mm 叉指厚度/μm 10 0.2 0.6 10 10 0.4 0.6 10 10 0.6 0.6 5/10/15/20/25/30/35/40 10 0.8 0.6 10 10 1 0.6 10 10 0.6 0.2 10 10 0.6 0.4 10 10 0.6 0.6 5/10/15/20/25/30/35/40 10 0.6 0.8 10 10 0.6 1 10 模型构建完毕后设定边界条件,将需施加电压的一端电极边界定义为终端,另一端电极接地。本文根据本课题组以往的实践经验,在终端施加5 V直流电压。完成后进行网格剖分,最后研究计算得解。求解涉及电流守恒方程:
$$ \nabla \cdot {\boldsymbol{J}} = {Q_{{\boldsymbol{j}},v}} $$ (1) $$ {\boldsymbol{J}} = \sigma {\boldsymbol{E}} + {{\boldsymbol{J}}_e} $$ (2) $$ {\boldsymbol{E}} = - \nabla V $$ (3) 式中,Qj,v为单位时间单位体积的电荷变化量(A/m3);J为电流密度;σ为电导率(S/m);E为电场强度(V/m);Je为外部电流密度(A/m2);V为电势(V)。COMSOL研究求解后,经相关后处理,得到电势分布图、电阻值等结果。
-
为找出一种较IDT具有更低初始电阻值的电极结构,本文设计了一种新型环状叉指结构,如图4所示。
为便于构建三维模型,且方便与上述叉指电极的传导性能进行比较,基底大小更改为长2000 μm,宽2000 μm,厚度不变。基底之上为石墨烯材质的均匀环形IDT,结构参数见表4。电极上层是光敏化学材料,面积与基底一致,厚度仍为20 μm。为便于和IDT对照比较,激励电压等其他条件均未变化。
表 4 均匀环形叉指电极结构参数
环对数/对 环指宽/mm 环间距/mm 厚度/μm 2 0.6 0.6 10 为探究环数对环状叉指电极传导性能的影响,同时与两对环模型形成对照,优化环状电极结构。在相同面积下,又建立三对环的仿真模型,如图5所示。
-
参考表3给出的13组参数,利用COMSOL仿真软件建立不同参数的叉指结构模型,并对传感器的相关电特性进行研究。为清楚观察电势分布变化情况,截取传感贴片外接端与叉指连接处的切面输出结果。由于模型较多,下面仅展示部分仿真电势分布图。由于在传感器面积固定的条件下,叉指电极指宽和间距的变化会导致叉指对数的变化。但依据现有理论,电极的对数对叉指电极传感器的性能影响不大[23]。从图6、图7可以看出,在外加激励电压、边界条件不变的情况下,叉指电极指宽和间距的改变都将引起电场分布的变化。从图6可以看出,随着电极指宽增加,电场强度也随之增强,高电势分布更加圆滑均匀。从图7可以看出,随着电极指间间距增大,电场强度也逐渐增强,但高电势分布稀疏,变化剧烈。
另外,电极厚度的改变,也将引起电场的变化,传感贴片的切面电势分布如图8所示。从图8可以看出,随着电极厚度增加,电场强度将略微减小,高电势分布逐渐变得扁平微小。电场分布的变化在一定程度上反映了电阻的变化。
为直观查看指宽、间距和厚度对IDT传导性能的影响,在COMSOL仿真结果中输入电阻计算表达式,得到传感贴片在以上3种不同结构参数下的电阻值。电阻值随不同结构参数的变化如图9所示。从图中可以看出,电阻随叉指指宽增大而逐渐减小,随指间间距增加先减小后增大,在间距为0.4 mm时,出现极小值;同时电阻随电极厚度增加出现先增大后减小的趋势,这主要由IDT模型中高电阻率化学材料的剂量增加而引起的。根据仿真结果可知,叉指密度越大,厚度越薄,其初始电阻值越小,且指间距存在某个特定值使电阻值达到最小值。
由以上结果进一步观察分析,推断出叉指电极的指宽为0.6 mm,间距为0.4 mm,厚度为5 μm时,电极结构应最优,电阻值最小。经仿真验证,计算得到其电阻值为2.67×106 Ω,小于前面所有设计的模型电阻值,达到了优化目的,其电势分布切面图如图10所示。
-
同样,利用COMSOL仿真软件对重新设计的环状叉指结构进行电特性的仿真研究。在相同电压的作用下,三对环的环状叉指电场分布如图11所示。可以看出,圆环之间的电场分布十分均匀,计算得出电阻,如表5所示。可见,三对环的环状叉指电极电阻比两对环小一倍,而环状叉指电极与最优的矩形叉指电极相比,电阻数值均位于一个数量级。可见,环状叉指存在一定的优化效果,但改善效果一般。
表 5 环状叉指仿真模型电阻
圆环对数/对 电阻/Ω 2 5.28×106 3 2.65×106 -
仿真精度取决于网格剖分的单元数量,单元数越多,结果就越精确,但会增加运算量及运算时间。COMSOL会根据模型的复杂程度自动进行网格剖分,可通过单元质量衡量剖分结果,因此单元质量不应过低。本文仿真模型的平均单元质量均在0.75以上,以保证仿真精确度较高。另外,通过实验测量贴片的初始电阻值,并将优化后的矩形IDT和环状IDT传感贴片的电阻值与仿真相对比,结果如图12所示。从图中可以看出,仿真值与实验值相差一倍左右,验证了仿真的正确性。
Simulation and Optimization of the Interdigital Structure of a UV Sensor Patch
-
摘要: 利用COMSOL Multiphysics 仿真软件建立了含叉指电极结构的紫外传感贴片三维模型,并对其进行了相关电特性研究。为降低传感器初始电阻,便于后端电路的测量开发,利用控制变量法,基于叉指指宽、间距、厚度等结构参数设置了多个不同的仿真模型。在AC/DC模块下的电流物理场接口下,选择稳态研究,结果表明,不同的结构参数将对电极和传感器的电场分布和初始电阻产生影响。通过对比分析发现,叉指电极的指宽为0.6 mm,间距为0.4 mm,厚度为5 μm时,初始电阻最小。此外,还设计了新型环状叉指电极结构,初步探究了其相关电学特性。研究发现该结构的初始电阻值与优化后的矩形叉指处于同一量级,对相关实验实践具有很好的指导意义。Abstract: In this paper, the COMSOL Multiphysics simulation software is used to establish a three-dimensional model of a UV sensor patch with an interdigital electrode structure, and its electrical characteristics are studied. In order to reduce the initial resistance of the sensor and facilitate the measurement of the back-end circuit, a number of different simulation models are set up based on the structural parameters such as the width, spacing, and thickness of the interdigitated fingers by using the control variable method. Under the current physics interface in the AC/DC module, a steady state study is selected, and the results show that different structural parameters will have an impact on the electric field distribution and initial resistance of the electrodes and sensors. Through observation and analysis, it is found that the finger width of the interdigital electrode is 0.6 mm, the spacing is 0.4 mm, and the initial resistance is the smallest when the thickness is 5 μm. In addition, a new annular interdigitated electrode structure was designed, and its related electrical properties were initially explored. It is found that its initial resistance value is in the same order of magnitude as the optimized rectangular interdigital electrode, which has a good guiding significance for relevant practical experiments.
-
Key words:
- COMSOL /
- electrode structure /
- interdigitated electrode /
- initial resistance /
- UV sensor
-
表 1 均匀IDT结构参数
对数/对 指宽/mm 间距/mm 厚度/μm 指长/mm 8 0.6 0.6 10 10 表 2 材料仿真参数
材料 模拟对象 电导率σ/S·m−1 相对介电常数εr 空气 周边环境 10−20 1 聚酰亚胺 柔性基底 5×10−15 3.4 石墨烯 电极 108 {4,4,5} 有机聚合物 光敏化学材料 10−11 5 表 3 参数对照组
叉指长度/mm 叉指宽度/mm 叉指间距/mm 叉指厚度/μm 10 0.2 0.6 10 10 0.4 0.6 10 10 0.6 0.6 5/10/15/20/25/30/35/40 10 0.8 0.6 10 10 1 0.6 10 10 0.6 0.2 10 10 0.6 0.4 10 10 0.6 0.6 5/10/15/20/25/30/35/40 10 0.6 0.8 10 10 0.6 1 10 表 4 均匀环形叉指电极结构参数
环对数/对 环指宽/mm 环间距/mm 厚度/μm 2 0.6 0.6 10 表 5 环状叉指仿真模型电阻
圆环对数/对 电阻/Ω 2 5.28×106 3 2.65×106 -
[1] SANG L, LIAO M, SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures[J]. Sensors (Basel), 2013, 13(8): 10482-10518. doi: 10.3390/s130810482 [2] CHANG H X, SUN Z H, HO K, et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure[J]. Nanoscale, 2011, 3(1): 258-264. doi: 10.1039/C0NR00588F [3] CHETRI P, DHAR J C. Self-Powered UV detection using SnO2 nanowire arrays with Au Schottky contact[J]. Materials Science in Semiconductor Processing, 2019, 100: 123-129. doi: 10.1016/j.mssp.2019.05.003 [4] GAO Y Y, XU J P, SHI S B, et al. TiO2 nanorod arrays based self-powered UV photodetector: Heterojunction with NiO nanoflakes and enhanced UV photoresponse[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11269-11279. [5] KISHIMOTO Y, ABE J. A fast photochromic molecule that colors only under UV light[J]. J Am Chem Soc, 2009, 131(12): 4227-4229. doi: 10.1021/ja810032t [6] KIM J, SALVATORE G A, ARAKI H, et al. Battery-Free, stretchable optoelectronic systems for wireless optical characterization of the skin[J]. Sci Adv, 2016, 2(8): e1600418. doi: 10.1126/sciadv.1600418 [7] WEN D D, LIU Y M, CHEN Y, et al. Memorizing UV exposure energy in resistance-A smart patch based on conductive polymer[C]//2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems. Piscataway: IEEE, 2017: 754-757. [8] BATISTA M D R, SUN J K, DRZAL L T, et al. Carbon nanotube-based flexible UV sensor on various substrates[J]. IEEE Sensors Journal, 2020, 20(15): 8429-8436. doi: 10.1109/JSEN.2020.2982829 [9] WU L, XU Z, MENG Q, et al. A new APTA-MER/black phosphorous interdigital electrode for malachite green detection[J]. Anal Chim Acta, 2020, 1099: 39-45. doi: 10.1016/j.aca.2019.11.026 [10] YU X, CHEN X D, CHEN X P, et al. Digital ammonia gas sensor based on quartz resonator tuned by interdigital electrode coated with polyaniline film[J]. Organic Electronics, 2020, 76: 105413-105417. doi: 10.1016/j.orgel.2019.105413 [11] LIAN Y, HE F J, WANG H, et al. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus[J]. Biosensors & Bioelectronics, 2015, 65: 314-319. [12] PENG N, HUANG F, CHU S, et al. Solar-Blind-Ultraviolet extraordinary transmission for ultrasensitive photoconductive detector based on plasmonic subwavelength interdigital electrodes[J]. Journal of Physics D: Applied Physics, 2016, 49(50): 505106-505107. doi: 10.1088/0022-3727/49/50/505106 [13] JIANG W L, ZHANG F Z, LIN Q J. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home[J]. Micro & Nano Letters, 2022, 17(6): 134-138. [14] 孟庆一. 基于叉指电极的高灵敏度传感器研究[D]. 北京: 北方工业大学, 2020. MENG Q Y. Research on high sensitivity sensor based on interdigital electrode[D]. Beijing: North China University of Technology, 2020. [15] VAKILIAN M, MAJLIS B Y. Study of interdigitated electrode sensor for lab-on-chip applications[C]//2014 11th IEEE International Conference on Semiconductor Electronics (ICSE). Piscataway: IEEE, 2014: 201-204. [16] AFSARIMANESH N, NAG A, ALAHI M E E, et al. Interdigital sensors: Biomedical, environmental and industrial applications[J]. Sensors and Actuators A: Physical, 2020, 305: 111918-111923. [17] WEN D D, LIU Y M, YUE C, et al. A wireless smart UV accumulation patch based on conductive polymer and CNT composites[J]. RSC Advances, 2017, 7(86): 54741-54746. doi: 10.1039/C7RA10789G [18] 李开璇. IDT结构优化及SAW器件研究[D]. 天津: 天津理工大学, 2021. LI K X. IDT structure optimization and SAW device research[D]. Tianjin: Tianjin University of Technology, 2021. [19] OBERLANDER J, JILDEH Z B, KIRCHNER P, et al. Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes[J]. Sensors, 2015, 15(10): 26115-26127. doi: 10.3390/s151026115 [20] LIU Y, WU Z, WANG H, et al. Finite element analysis of the axial mechanical properties of piezoelectric actuator with tubular interdigitated electrodes[J]. Journal of the Korean Physical Society, 2020, 77(10): 861-868. doi: 10.3938/jkps.77.861 [21] 赵雨秋, 崔传金, 何宁, 等. 基于COMSOL Multiphysics的叉指微电极细胞传感器仿真研究[J]. 实验室研究与探索, 2019, 38(12): 116-121. doi: 10.3969/j.issn.1006-7167.2019.12.027 ZHAO Y Q, CUI C J, HE N, et al. Simulation of interdigital microelectrode cell sensor based on COMSOL multiphysics[J]. Research and Exploration in Laboratory, 2019, 38(12): 116-121. doi: 10.3969/j.issn.1006-7167.2019.12.027 [22] CAO C, SUN X, FANG Y, et al. Theoretical model and design of electroadhesive pad with interdigitated electrodes[J]. Materials & Design, 2016, 89: 485-491. [23] 何宁, 崔传金, 龚瑞昆, 等. 用于细胞检测的微叉指电极阻抗生物传感器研究进展[J]. 食品安全质量检测学报, 2018, 9(6): 1404-1410. doi: 10.3969/j.issn.2095-0381.2018.06.030 HE N, CUI C J, GONG R K, et al. Research progress of micro-interdigital electrode impedance biosensor for cell detection[J]. Journal of Food Safety & Quality, 2018, 9(6): 1404-1410. doi: 10.3969/j.issn.2095-0381.2018.06.030