多结构域蛋白质结构预测方法综述

An Overview of Multi-Domain Protein Structure Prediction Methods

  • 摘要: 人工智能首次精确预测蛋白质三维结构入选《Science》杂志2020年十大科学突破,成为结构生物信息学领域的前沿方向。在自然界中,绝大多数单链蛋白中包含多个结构域。从生物学意义上来讲,结构域间缔结与协作对实现多个相关的功能至关重要。首先,介绍了蛋白质结构的预测技术发展及重要国际赛事CASP;其次,以单域蛋白结构预测方法、多域蛋白结构组装方法以及端到端的单体蛋白预测方法3部分对一些具有代表性的方法进行了简要阐述;然后,介绍了蛋白质结构预测研究中常用的数据库和模型质量评估指标,并比较了不同预测方法的性能;最后,分析总结了当前蛋白质结构预测方法的发展趋势,并对该领域未来的研究方向进行了展望。

     

    Abstract: Artificial intelligence accurately predicted the three-dimensional structure of proteins for the first time, which was selected as one of the top ten scientific breakthroughs in 2020 by "Science" magazine, and became a frontier direction in the field of structural bioinformatics. Most single-chain proteins in nature contain multiple domains. In a biological sense, inter-domain association and cooperation are crucial to achieve multiple related functions. This paper firstly introduces the development of protein structure prediction and the critical assessment of structure prediction (CASP); Secondly, some representative methods are briefly described in three parts: single-domain protein structure prediction methods, multi-domain protein structure assembly methods and end-to-end protein structure prediction methods; The commonly used databases and model quality evaluation indicators in protein structure prediction are then demonstrated, and the performances of the representative prediction methods are compared. Finally, we conclude with a brief overview of the future challenges and outstanding questions in the field.

     

/

返回文章
返回