-
石墨烯(Graphene)、氮化硼(h-BN)、二硫化钼(MoS2)作为典型的二维层状材料,具有原子级超薄厚度和优异的电学等物理特性[1-4],在新型二维纳米电子器件,如二维晶体管、反相器和逻辑电路等研究中具有巨大潜力[5-6]。研究报道Graphene具有超高的载流子迁移率,实验条件下可以达到200000 cm2V−1s−1[7]。Graphene具有的这种高迁移率和高导电性使其在二维电子电极接触研究中具有很大的优势。同时,由于它具有随电压可调的费米能级[8],其作为电极材料与二维半导体材料接触时,不会产生如金属与二维半导体接触时产生的肖特基势垒[9-10]。二维h-BN属于性能稳定的绝缘材料,有大量研究h-BN作为二维电子器件中栅极介质材料的报道[11]。MoS2属于二维半导体材料,且MoS2具有可调的禁带宽度:禁带宽度随着材料的层数厚度可调,可从直接带隙半导体过渡到间接带隙半导体。如文献[12-14]提出单层MoS2具有1.8 eV禁带宽度,为直接带隙半导体;多层MoS2具有1.2 eV禁带宽度,为间接带隙半导体。因此,由于MoS2具有位于可见光范围的禁带宽度并且高效可调,MoS2作为新型沟道材料在新一代晶体管、反相器等逻辑器件与电路中极具潜力[15-17]。
二维材料的干法转移是一种灵活、高效的材料转移方法[18-19],在二维纳米电子器件研究中具有十分重要的地位。干法转移不仅能够转移单一的二维材料,而且还能够通过转移多种二维材料,堆叠构建丰富的二维异质结体系[20-21]。干法转移全程不需要接触任何溶剂,可以保证转移的二维材料及二维异质结具有很高的清洁界面[22]。
本文首先利用机械剥离法得到二维Graphene、h-BN和MoS2材料,然后通过干法转移在含有预置电极的硅/二氧化硅(Si/SiO2)衬底上制备出MoS2二维异质结反相器。该反相器由一个MoS2二维异质结晶体管和一个MoS2电阻串联组成,器件的各端通过Graphene和Si/SiO2基底上的金电极(Pad)相连接,进一步测试graphene作为与基底Pad的接触材料时反相器的电学特性。为了改善MoS2反相器的性能,本文通过热蒸镀法在基底Pad与器件的Graphene电极之间沉积额外的金电极材料来优化其电学接触,进而对反相器电学性能进行测试和对比研究,证明了这一方法可以有效地提升器件的电学性能。
Fast Prototyping and Characterization of MoS2 Inverter Enabled by Dry Transfer
-
摘要: 提出了一种利用干法转移制备的二硫化钼反相器并对其进行了性能研究。其中,反相器的核心结构由二硫化钼异质结晶体管和电阻串联组成,石墨烯则作为该器件的电极材料。为了提高二硫化钼晶体管和反相器的电学性能,利用热蒸镀金法优化石墨烯电极与基底测试电极(Pad)之间的接触特性。研究发现,器件经过优化之后得到的二硫化钼晶体管的开关比(ION/IOFF) 最大超过105;二硫化钼反相器的增益大于6,展示出典型的逻辑反相特性。结果表明,干法转移技术在二维晶体管、反相器及逻辑电路的制备和应用中极具潜力。Abstract: In this work, we report the fabrication and characterization of an MoS2 inverter by a dry transfer method, where the inverter consists of an MoS2 transistor and an MoS2 resistor connected in series with graphene flakes serving as electrodes. To improve the electrical performance of the MoS2 transistor and invertor, we utilize thermal evaporation (Au) through a stencil mask to improve the contact quality between the graphene electrodes and metal electrodes on the substrate. Upon such enhancement, we find that the MoS2 transistor exhibits an ION/IOFF > 105; the MoS2 inverter shows a typical logic-conversion feature with voltage gain > 6. Our work demonstratesthat the dry transfer technique has great potential in the preparation and application of two-dimensional transistors, inverters and logic circuits.
-
Key words:
- dry transfer /
- MoS2 inverter /
- MoS2 transistor /
- two-dimensional material
-
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-Dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. doi: 10.1038/nature04233 [2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [3] WATANABE K, TANIGUCHI T, KANDA H. Direct-Bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nature Materials, 2004, 3(6): 404-409. doi: 10.1038/nmat1134 [4] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805 [5] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193 [6] ZHU K, WEN C, ALJARB A A, et al. The development of integrated circuits based on two-dimensional materials[J]. Nature Electronics, 2021, 4(11): 775-785. doi: 10.1038/s41928-021-00672-z [7] BOLOTINA K I, SIKESB K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355. doi: 10.1016/j.ssc.2008.02.024 [8] YU L, LEE Y H, LING X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics[J]. Nano Letters, 2014, 14(6): 3055-3063. doi: 10.1021/nl404795z [9] TUNG R T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces[J]. Physical Review Letters, 2000, 84(26): 6078. doi: 10.1103/PhysRevLett.84.6078 [10] LIU H, NEAL A T, YE P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6(10): 8563-8569. doi: 10.1021/nn303513c [11] LEE G H, YU Y J, LEE C, et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(24): 243114. doi: 10.1063/1.3662043 [12] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-Layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi: 10.1038/nnano.2010.279 [13] RADISAVLJEVIC B, KIS A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820. doi: 10.1038/nmat3687 [14] BAO W, CAI X, KIM D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects[J]. Applied Physics Letters, 2013, 102(4): 042104. doi: 10.1063/1.4789365 [15] RADISAVLJEVIC B, WHITWICK M B, KIS A. Integrated circuits and logic operations based on single layer MoS2[J]. ACS Nano, 2011, 5(12): 9934-9938. doi: 10.1021/nn203715c [16] ZOU X, WANG J, CHIU C H, et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors[J]. Advanced Materials, 2014, 26(36): 6255-6261. doi: 10.1002/adma.201402008 [17] CHENG R, JIANG S, CHEN Y, et al. Few-Layer molybdenum disulfide transistors and circuits for high-speed flexible electronics[J]. Nature Communications, 2014, 5(1): 1-9. [18] LEE J, WANG Z, HE K, et al. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 2013, 7(7): 6086-6091. doi: 10.1021/nn4018872 [19] FRISENDA R, NAVARRO-MORATALLA E, GANT P, et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials[J]. Chemical Society Reviews, 2018, 47(1): 53-68. doi: 10.1039/C7CS00556C [20] LIANG Y, ZHU J, XIAO F, et al. Two-Dimensional inverters based on MoS2-hBN-graphene heterostructures enabled by a layer-by-layer dry-transfer method[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 1269-1274. doi: 10.1109/JEDS.2021.3097995 [21] SCHRANGHAMER T F, SHARM M, SINGH R, et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications[J]. Chemical Society Reviews, 2021, 50(19): 11032-11054. doi: 10.1039/D1CS00706H [22] 梁亚春, 焦陈寅, 肖飞, 等. 基于一种多功能系统的二维纳米器件高效制备[J]. 中国科学: 信息科学, 2022, 52(2): 348-357. doi: 10.1360/SSI-2021-0317 LIANG Y C, JIAO C Y, XIAO F, et al. Fast prototyping of nanodevices based on two dimensional materials using a multifunctional fabrication system[J]. Scientia Sinica Informationis, 2022, 52(2): 348-357. doi: 10.1360/SSI-2021-0317 [23] NI Z, WANG Y, YU T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4): 273-291. doi: 10.1007/s12274-008-8036-1 [24] SOUIBGUI M, AJLANI H, CAVANNA A, et al. Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride[J]. Superlattices and Microstructures, 2017, 112: 394-403. doi: 10.1016/j.spmi.2017.09.047 [25] DHAKAL K P, DUONG D L, LEE J, et al. Confocal absorption spectral imaging of MoS2: Optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2[J]. Nanoscale, 2014, 6(21): 13028-13035. doi: 10.1039/C4NR03703K [26] YANG R, WANG Z, FENG P X L. Electrical breakdown of multilayer MoS2 field-effect transistors with thickness-dependent mobility[J]. Nanoscale, 2014, 6(21): 12383-12390. doi: 10.1039/C4NR03472D [27] YANG R, ZHENG X, WANG Z, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2014, 32(6): 061203. [28] 梁亚春, 朱健凯, 肖飞, 等. 二维纳米机电谐振器高效制备研究[J]. 电子科技大学学报, 2022, 51(3): 452-457. LIANG Y C, ZHU J K, XIAO F, et al. Fast prototyping of two-dimensional nanoelectromechanical resonators[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3): 452-457. [29] DAS S, CHEN H Y, PENUMATCHA A V, et al. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Letters, 2013, 13(1): 100-105. doi: 10.1021/nl303583v