-
高速铁路是铁路现代化的重要标志,我国采取引进−吸收−消化−再创新的研制思路,在十几年间建造完成了世界上里程最长的高速铁路网络,截止2021年,我国高铁线路总长突破4万公里。在动车组研发方面,保有量达到4000标准组以上,形成了具有自主知识产权的复兴号系列动车组。然而,目前高速动车组仍有部分关键技术被国外垄断,其中,滚动轴承是决定动车组健康状态与寿命的关键部件,却长期依赖进口,动车组轴承市场主要被德国FAG、瑞典SKF和日本NTN等国外企业把持,是一个典型的“卡脖子”难题。
我国幅员辽阔,高铁线路跨度大,动车组长大交路、长时间、高速、持续运行,同时还会面临低温、环境腐蚀、风沙侵害等恶劣运行环境,这使得动车组轴承系统的服役环境异常复杂,由此导致动车组轴承(包括轴箱轴承、牵引电机轴承和齿轮箱轴承)的失效情况严重,其可靠性面临严峻考验,给动车组轴承的设计制造带来了挑战。因此,研究动车组轴承的设计制造及其在服役过程中的可靠性问题具有十分重要的意义。本文总结了近年来关于动车组轴承设计制造及其可靠性的相关研究成果,从动车组轴承设计制造及工艺、故障模式机理及影响分析、故障诊断与状态监测、可靠性建模和评估、可靠性试验5个方面对动车组轴承的研究现状进行综述。
-
轴承损伤故障通常会产生特定的故障特征,按照轴承诊断手段可将其分为:基于连续温度信号的分析技术、基于声学信号的分析技术和基于振动信号的分析技术[61]。而按照铁路轴承的监测方法可以分为:轨旁检测系统和车载监测系统。
轨旁检测系统主要是基于温度信号和声学信号,滚动轴承在正常运行时也处于发热状态,但一旦出现磨损或者剥离,温度会大幅增加。EN12082:2007中规定[62],在铁道车辆的运行过程中,轴承温度是重要的监测指标。在20世纪70年代,美国Servo公司最先开发了一套以热辐射原理为基础的轴承温度探测系统,并且得到了广泛应用[63]。法国TGV线上每隔40~50 km就会安装一个轴温报警器,截止2013年英国已经安装的检测装置超过200套。动车组运行过程中,轴承需要在足够的温度下才会触发报警机制,此时轴承往往已经失效,因而无法对轴承的情况进行早期及时诊断。而以声学信号为基础的诊断模式,能够较快地发现轴承故障。90年代中期,美国TTCI[64]开发了轴箱轴承的轨旁声学监测系统,并结合神经网络算法,大幅提升了轴箱轴承监测的准确性。随后,澳大利亚铁路部门通过研究轴承的声学特征,也开发了地面铁路轴承声学监测系统,在铁路和环形铁道进行了试验验证[65]。我国的铁路轴承监测体系的研制起步相对较晚,但发展较快。20世纪70年代,开发的第1代温度探测设备,采用人工记录的方式,尚无法实现联网跟踪的要求。到了20世纪80年代,第2代温度探测设备利用计算机和人工智能,能够实现联网追踪的要求,也能够实现动态监测和进行智能判别。20世纪90年代,哈铁研制的HTK-499型红外线温度探测系统已经能够满足我国铁路的提速需求,能够满足时速360公里的温度监测要求[66]。2003年,在对国外研究成果总结的基础上,结合我国铁路运营的发展现状,研制成功了滚动轴承故障轨边声学诊断系统TADS。
车载监测系统相比于轨旁检测系统能更及时地发现轴承故障,英国铁路利用加速度传感器监控每个轴箱轴承的实时振动状态,研制了铁路轴承车载监测系统[66]。20世纪90年代,SKF公司开发了BOMO车载转向架监测系统,利用温度和振动复合传感器获取更为全面的轴承信息,以提升车载轴承状态评价的准确性,并实现了故障预警功能[67]。2001年,德国铁路系统技术公司开发的车载转向架状态监测系统同样采用振动与温度联合监测技术对轴箱轴承进行故障诊断,在ICE2动车组上进行试验后,安装于ICE3动车组正式使用[68]。目前我国的高速动车组均配备有轴温监测系统[64],温度传感器安装在转向架各个轴端的轴箱上,而监测装置则安装在列车电气柜内,同时具备传感器状态自诊断、温度采集及数据的分析与处理功能。
-
轴承故障诊断本质上是模式识别问题,所以主要包含特征提取和分类两个步骤,基于振动信号的诊断当前应用最为广泛。对于动车组轴承的故障诊断技术,本文将其分为基于数据统计和基于人工智能两种主流方法进行综述。
-
从时域角度对动车组轴承进行故障诊断,是通过直接对原始采集信号进行研究和分析,不对信号进行滤波缩放处理,时域数据可最大程度还原信号所具备的能量信息,直观且易于理解。其中,时域信号的有量纲参数主要有:峰值、均方根值。有量纲指标值表征了信号在各时刻的统计特性。时域信号的无量纲参数指标主要包括了:峰值因子、峭度、峭度因子、波形因子、脉冲因子和裕度因子等[69]。文献[70]对每一个时域统计参数进行了研究,指出无量纲参数受旋转机械转速、载荷以及信号绝对水平等影响较大,所以对诊断精度有较好的鲁棒性。均方根值能够很好反映轴承全寿命周期,在失效不同阶段中的加速度信号中能量变化[71],适合描述轴承从正常到失效的过程中,轴承振动水平和局部损伤程度之间的变化关系[72-73]。峭度和峰值指标对信号的波形变化非常敏感,能够反映出轴承缺陷发展趋势,偏斜度适用于不对称、非线性信号,可以描述滚动轴承的故障特征。鉴于峭度对周期信号转速和频率带宽在高频、窄带范围的有效性,文献[74]利用峭度值作为评估标准,选择合适参数对小波多分辨率分析完成优化,成功运用到了动车组滚动轴承早期故障诊断中。文献[75]提出了一种基于时延峰度的自适应边界确定方法,并通过动车组故障模拟信号和实际轴箱轴承振动信号验证了该方法的有效性。结果表明,该方法能自适应地确定含有故障信息共振带的合理边界。虽然时域统计指标在故障诊断中应用广泛,但是极容易受噪声等干扰成分的影响,而我国高速动车组轴承的服役环境复杂多变,势必存在较多的噪声干扰成分,因此时域统计指标在高速动车组轴承实际故障诊断中的应用并不多。
与时域分析法相比,频域分析法和时频域分析法能够更有效地提取故障响应特征,可以更多地滤除噪声干扰对诊断的负面影响。动车组滚动轴承匀速运行过程中,轴承缺陷与滚道或滚动体发生周期碰撞引起周期性的响应,采用傅里叶变换可将振动信号变换到频域,在频域中识别目标故障特征频率。但傅里叶变换只适用于平稳信号分析,而动车组滚动轴承故障信号是非平稳信号,只分析其频域全局特性存在局限性。此外,动车组轴承的服役环境恶劣,承受来自轨道、环境等多源激扰,轴承的振动信号的频率成分十分复杂,轴承故障信号中幅值较小的故障特征频率极易被其他干扰频率成分掩盖,所以仅依靠傅里叶变换对动车组轴承进行故障诊断效果往往并不好。当前动车组轴承故障信号分析,通常采用以离散小波变换、小波包分解等为代表的时频分析方法,或以包络谱分析、Teager能量算子、导数包络算子以及倒谱分析、倒包络谱分析为代表的调制频率识别方法。表1为近年来国内外基于数据统计特征的动车组轴承故障诊断方法。
表 1 基于数据统计特征的动车组轴承故障诊断方法
-
人工智能和模式识别等学科的兴起使得智能化的故障诊断成为可能,智能诊断技术的大量应用减少了对人工的依赖性,而且提高了诊断效率。因此动车组轴承的故障诊断也朝着人工智能的方向发展,当前用于动车组滚动轴承的智能诊断技术主要有神经网络、专家系统、模糊逻辑和支持向量机等,表2列举了近年来国内外基于人工智能的动车组轴承故障诊断技术。
目前针对动车组轴承故障诊断的研究处在快速发展阶段,在大数据和人工智能背景下,轴承故障诊断的算法也愈加丰富,但是真正能够运用到工程实际,即在线运行动车组轴承故障诊断的方法却很少。原因主要可能在于,目前多数训练集采用的是实验室台架实验获得的故障数据,如何将变量可控的台架实验数据迁移至复杂的实际振动环境中是难点。此外,实际动车组轴承的部分监测信号(包括振动、温度等)往往采样率偏低,可能无法完全覆盖高速旋转轴承故障的特征频带,且不同信号源间的采样率也有所差异,因此,如何有效融合多维度多源信号也是实现动车组轴承在途故障诊断的关键。
A Review of Research on Bearing and Its Reliability for EMU Trains
-
摘要: 滚动轴承是动车组列车的关键基础零部件,我国动车组高速、长时间持续运行的特点,以及多变的运行环境,使得动车组轴承的工作环境及其内部受力状态较一般轴承更为复杂,这对轴承的设计制造及可靠性提出了更高的要求。为实现我国高速铁路核心技术完全自主化,近年来针对动车组轴承的研究众多。该文首先介绍了动车组轴承的设计制造与工艺,阐述了动车组轴承在服役过程中的典型失效模式、机理及其影响,随后归纳了动车组轴承故障诊断方法与技术,并对轴承可靠性建模与寿命评估方法的研究现状进行论述,最后简要阐述了动车组轴承的可靠性试验研究。通过对动车组轴承及其可靠性研究进展的总结,可为我国轴承的自主设计理论及制造技术提供参考。Abstract: Rolling bearing is regarded as the key component of high-speed trains. The characteristics of high-speed, long-term and continuous operation of China’s Electric Multiple Units (EMUs), as well as the variable operating environment, make the working environment and internal stress state of EMUs’ bearing more complex than those of general bearing, which puts forward higher requirements for the design, manufacture and reliability of bearing. To realize the localization of China's high-speed railway core technology, a number of researches were carried out on the EMUs’ bearing in recent years. This paper firstly introduces the design and manufacturing technology of the EMUs’ bearing, and discusses the typical in-service failure modes of the EMUs’ bearing, as well as the failure mechanisms and effects. Consequently, the fault diagnosis methods of the EMUs’ bearing are classified and summarized, and the reliability modeling and life evaluation methods of the EMUs’ bearing are reviewed. Finally, the reliability test of the EMUs’ bearing is briefly described. This paper summarizes the research of bearing and its reliability for EMU trains, which can provide a reference for the design and manufacturing technology of the bearing of China’s high-speed EMUs.
-
Key words:
- EMUs’ bearing /
- failure analysis /
- fault diagnosis /
- life evaluation /
- reliability
-
表 1 基于数据统计特征的动车组轴承故障诊断方法
-
[1] 彭飞, 张尧. 轨道交通轴承故障诊断与寿命预测技术综述[J]. 城市轨道交通研究, 2020, 23(12): 162-168. PENG F, ZHANG Y. General review of rail transit bearing fault diagnosis and lifespan prediction technology[J]. Urban Mass Transit, 2020, 23(12): 162-168. [2] 叶军, 杨立芳. 发展中的轨道交通车辆用轴承[J]. 轴承, 2013(12): 61-65. YE J, YANG L F. Development of bearings for rail transit vehicles[J]. Bearing, 2013(12): 61-65. [3] 施洪生, 张奕黄, 高培庆. 高速牵引电机轴承关键技术的发展趋势[J]. 机车电传动, 2007(2): 1-5. doi: 10.3969/j.issn.1000-128X.2007.02.001 SHI H S, ZHANG Y H, GAO P Q. Development trend of critical technologies for bearing of high-speed traction motor[J]. Electric Drive for Locomotives, 2007(2): 1-5. doi: 10.3969/j.issn.1000-128X.2007.02.001 [4] ITO N. Technological trends of railway rolling stock bearings[J]. NSK Technical Journal, 2009, 683: 2-7. [5] 杨才福, 苏航, 惠卫军, 等. 高速列车用车轮钢、轴承钢和弹簧钢的发展[J]. 机车电传动, 2003(S1): 32-36. doi: 10.3969/j.issn.1000-128X.2003.z1.009 YANG C F, SU H, HUI W J, et al. Development of wheel steel, bearing wheel and spring steel for high speed train[J]. Electric Drive for Locomotives, 2003(S1): 32-36. doi: 10.3969/j.issn.1000-128X.2003.z1.009 [6] 李彬周. 高铁渗碳轴承钢热处理工艺及组织性能研究[D]. 长春: 东北大学, 2019. LI B Z. Research on heat treatment technology, microstructure and mechanical properties of carburizing bearing steel for high-speed railway[D]. Changchun: Northeastern University, 2019. [7] 张玲, 仵永刚, 廉小敏. 国外高铁轴箱轴承原材料及热处理质量分析[J]. 轴承, 2017(7): 38-42. ZHANG L, WU Y G, LIAN X M. Analysis on raw material and heat treatment quality for foreign high-speed railway axle box bearings[J]. Bearing, 2017(7): 38-42. [8] 刘潇. 高铁轴承套圈渗碳热处理仿真技术及工艺研究[D]. 北京: 北京交通大学, 2020. LIU X. Research on simulation technology and process of carburizing heat treatment for bearing rings of high-speed rail[D]. Beijing: Beijing Jiaotong University, 2020. [9] 张毅, 柴哲, 孙慧丽, 等. 高铁用GCr15轴承钢的热处理工艺研究进展[J]. 有色金属材料与工程, 2017, 38(6): 356-362. ZHANG Y, CHAI Z, SUN H L, et al. Research progress on heat treatment technology of GCrl15 bearing steel used for high-speed railway[J]. Nonferrous Metal Materials and Engineering, 2017, 38(6): 356-362. [10] 邓爱军. 高铁用轴承钢冶金过程的关键技术研究[D]. 马鞍山: 安徽工业大学, 2019. DENG A J. Research on the key technology of metallurgical process of bearing steel for high-speed rail[D]. Maanshan: Anhui University of Technology, 2019. [11] 吕斌. 高铁用GCr15轴承钢电渣重熔工艺仿真与试验研究[D]. 北京: 北京交通大学, 2021. LYU B. Simulation and experiment studies on electroslag remelting process of GCrl5 bearing steel for high-speed railway[D]. Beijing: Beijing Jiaotong University, 2021. [12] 邹胜超. G20CrNi2MoA轴承套圈热处理仿真优化与试验研究[D]. 北京: 北京交通大学, 2021. ZOU S C. Simulation optimization and experimental study on heat treatment of G20CrNi2MoA bearing rings[D]. Beijing: Beijing Jiaotong University, 2021. [13] 黄振荣. 高铁轴承零件拋光新方法及摩擦副微结构-织物界面特性研究[D]. 湘潭: 湖南科技大学, 2020. HUANG Z R. New ultra-precision polishing method for bearing parts in high-speed train and interface characteristics of microstructure-fabric for the frictional pair[D]. Xiangtan: Hunan University of Science and Technology, 2020. [14] 王玉松. 高性能轴承钢化学机械抛光工艺研究[D]. 成都: 西南交通大学, 2019. WANG Y S. Research on chemical mechanical polishing process of high performance bearing steel[D]. Chengdu: Southwest Jiaotong University, 2019. [15] 庞碧涛, 王玉杰, 张玲, 等. 一种流线分布合理的动车组轴承内外圈锻造成形方法: CN108465770A[P]. 2018-08-31. . PANG B T, WANG Y J, ZHANG L, et al. A method for forging inner and outer rings of multiple unit bearings with reasonable streamline distribution: CN108465770A[P]. 2018-08-31. . [16] 胡博奎. 高铁轴承环成形过程金属流线演变及控制优化研究[D]. 武汉: 武汉理工大学, 2019. HU B K. Research on metal flowline evolution and process optimization of bearing ring for high-speed rail[D]. Wuhan: Wuhan University of Technology, 2019. [17] 段欣生, 邱明. 高铁轴承磷化工艺影响因素分析[J]. 轴承, 2019(2): 27-30. DUAN X S, QIU M. Analysis on influencing factors of phosphating process for high speed railway bearings[J]. Bearing, 2019(2): 27-30. [18] 姚立丹, 杨海宁. 国外轨道车辆润滑脂进展[C]// 2006全国摩擦学学术会议论文集(三). 哈尔滨: [s.n.], 2006: 150-153. YAO L D, YANG H N. The trend of greases for railway overseas[C]// Proceedings of the 2006 National Tribology Academic Conference (III). Haerbin: [s.n.], 2006: 150-153. [19] 胡欣. 铁路客车轴箱轴承接触润滑机理[D]. 武汉: 武汉科技大学, 2014. HU X. Contact loading distribution of axle bearing assembly and lubrication performance of bearings[D]. Wuhan: Wuhan University of Science and Technology, 2014. [20] 尹延经. 高速铁路轴箱轴承润滑脂性能试验研究[D]. 洛阳: 河南科技大学, 2013. YIN Y J. Experimental investigation on performance of grease for high-speed railway axleboxes bearings[D]. Luoyang: Henan University of Science and Technology, 2013. [21] 杨奉霖. 高速机车轴箱轴承温度场分析与润滑脂劣化机理研究[D]. 洛阳: 河南科技大学, 2020. YANG F L. Research on temperature field and grease degradation mechanism of high-speed locomotive axle box bearing[D]. Luoyang: Henan University of Science and Technology, 2020. [22] 韩庆利, 范军, 刘超, 等. 润滑脂对高速动车组轴箱轴承温度的影响研究[J]. 轴承, 2019(8): 42-45. HAN Q L, FAN J, LIU C, et al. Study on influence of grease on temperature of axle box bearings for high speed EMU[J]. Bearing, 2019(8): 42-45. [23] 赵伟桦, 马聪, 曾献智, 等. 高速铁路轴箱轴承用润滑脂耐久性试验研究[J]. 轴承, 2017(6): 37-41. ZHAO W H, MA C, ZENG X Z, et al. Experimental study on durability of grease for high-speed railway axle box bearings[J]. Bearing, 2017(6): 37-41. [24] 周海泉, 周文锦. 一种新型动车组轴承匀脂跑合机[J]. 轴承, 2021(7): 32-35. ZHOU H Q, ZHOU W J. A new bearing grease homogenizer for EMU[J]. Bearing, 2021(7): 32-35. [25] 赵言贵. 和谐动车组轴箱轴承压装工艺研究[J]. 中国新技术新产品, 2014(9): 103. ZHAO Y G. Research on the press assembly process of axle box bearing of CRH EMUs[J]. China New Technologies and Products, 2014(9): 103. [26] 方芳, 高武正, 曾献智, 等. 高铁用轴箱轴承轻接触式密封压装工艺[J]. 轴承, 2019(10): 19-22. FANG F, GAO W Z, ZENG X Z, et al. Pressing assembly process for light contact seal of axle box bearings for high - speed railway[J]. Bearing, 2019(10): 19-22. [27] 申林. 高铁轮轴轴承过盈配合接触性能研究[D]. 北京: 北京交通大学, 2019. SHEN L. Research on interference fit behavior of CRH wheel axle and bearing[D]. Beijing: Beijing Jiaotong University, 2019 [28] 王曦, 侯宇, 孙守光, 等. 高速列车轴承可靠性评估关键力学参量研究进展[J]. 力学学报, 2021, 53(1): 19-34. WANG X, HOU N, SUN S G, et al. Advances in key mechanical parameters for reliability assessment of high-speed train bearings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 19-34. [29] 赵传国. 滚动轴承失效分析概论[J]. 轴承, 1996(1): 39-46+18. ZHAO C G. Introduction to failure analysis of rolling bearings[J]. Bearing, 1996(1): 39-46+18. [30] SKF. Railway technical handbook vol 2: Drive systems: Traction motor and gearbox bearings, sensors, condition monitoring and services[M]. Sweden: SKF Group, 2011. [31] 呙如兵. 高速列车轴箱轴承材料微观结构及力学性能演化规律研究[D]. 北京: 北京交通大学, 2019. GUO R B. Study on evolution of microstructure and mechanical properties of high-speed train axle box bearing[D]. Beijing: Beijing Jiaotong University, 2019. [32] 张恒, 张关震, 丛韬, 等. 非金属夹杂物对动车组轴箱轴承剥离的影响[J]. 中国铁道科学, 2020, 41(6): 127-134. ZHANG H, ZHANG G Z, CONG T, et al. Effect of non-metallic inclusions on the peeling of axle box bearing in EMUs[J]. China Railway Science, 2020, 41(6): 127-134. [33] 孔凡爽. 基于圆柱度的动车组轴承过盈配合三维建模及损伤机理分析[D]. 北京: 北京交通大学, 2021. KONG F S. Three-dimensional modeling of EMU bearing interference fit and damage mechanism analysis based on cylindricity[D]. Beijing: Beijing Jiaotong University, 2021. [34] 潘碧琳, 杨兴宽, 赵方伟. 典型服役工况对高铁轴箱轴承疲劳损伤的影响度研究[J]. 铁道机车车辆, 2022, 42(2): 1-7. PAN B L, YANG X K, ZHAO F W. Influence of typical service conditions on fatigue damage of axle box bearing of high-speed railway[J]. Railway Locomotive & Car, 2022, 42(2): 1-7. [35] 杜风贞, 马通达, 刘安生. 高铁轴箱轴承疲劳剥蚀失效分析[C]// 2015年全国失效分析学术会议论文集. 北京: [s.n.], 2015: 41-44. DU F Z, MA T D, LIU A S. Failure analysis of axle box tapered roller bearing for high speed railway train[C]// Proceedings of the 2015 National Failure Analysis Academic Conference. Beijing: [s.n.], 2015: 41-44. [36] 范军, 韩庆利, 刘超, 等. 高速动车组轴箱轴承保持架磨损原因分析[J]. 轴承, 2019(6): 31-32+37. FAN J, HAN Q L, LIU C, et al. Analysis on wear of axle box bearing cages for high speed EMU[J]. Bearing, 2019(6): 31-32+37. [37] 许红江, 张隶新, 张庆华, 等. 高速动车组轴箱轴承温升原因探究[J]. 铁道车辆, 2020, 58(9): 29-32+6. XU H J, ZHANG L X, ZHANG Q H, et al. Exploring the causes to temperature rise of axle box bearings for high speed multiple units[J]. Rolling Stock, 2020, 58(9): 29-32+6. [38] 韩庆利, 李国栋, 赵文学. 高速动车组轴箱轴承温升故障分析[J]. 机车电传动, 2017(1): 115-117. HAN Q L, LI G D, ZHAO X W. Analysis on temperature rise failure of axle box bearing of high speed EMU[J]. Electric Drive for Locomotives, 2017(1): 115-117. [39] GUO R, LEI X, ZHANG D, et al. Case study: The effect of running distance on the microstructure and properties of railroad axle bearings[J]. Wear, 2018, 394-395: 159-165. doi: 10.1016/j.wear.2017.10.016 [40] GUO R, YANG G, LI Z, et al. Statistical analysis on rolling contact fatigue in railroad axle bearing steel[J]. Fatigue & Fracture of Engineering Material & Structures. 2019, 42: 651-663. [41] 查浩, 任尊松, 徐宁. 高速动车组轴箱轴承振动特性[J]. 机械工程学报, 2018, 54(16): 144-151. doi: 10.3901/JME.2018.16.144 ZHA H, REN Z S, XU N. Vibration performance of high-speed vehicles with axle box bearing[J]. Journal of Mechanical Engineering, 2018, 54(16): 144-151. doi: 10.3901/JME.2018.16.144 [42] 蔡森, 周靛, 孔奎, 等. 基于ANSYS/LS-DYNA的高铁轴承动态仿真[J]. 轴承, 2017(10): 5-9. CAI S, ZHOU D, KONG K, et al. Dynamic simulation of high-speed railway bearings based on ANSYS/LS-DYNA[J]. Bearing, 2017(10): 5-9. [43] 查浩, 任尊松, 徐宁. 高速动车组轴箱轴承滚道载荷特性研究[J]. 机械工程学报, 2020, 56(4): 135-142. doi: 10.3901/JME.2020.04.135 ZHA H, REN Z S, XU N. Load characteristics of axle box bearing raceway of high-speed EMU[J]. Journal of Mechanical Engineering, 2020, 56(4): 135-142. doi: 10.3901/JME.2020.04.135 [44] 查浩, 任尊松, 薛蕊, 等. 高速动车组轴箱轴承累积损伤与疲劳寿命研究[J]. 铁道学报, 2018, 40(10): 30-35. doi: 10.3969/j.issn.1001-8360.2018.10.005 ZHA H, REN Z S, XUE R, et al. Study on cumulative damage and fatigue life of axle box bearings in high-speed EMU[J]. Journal of the China Railway Society, 2018, 40(10): 30-35. doi: 10.3969/j.issn.1001-8360.2018.10.005 [45] WANG Z, ZHANG W, YIN Z, et al. Effect of vehicle vibration environment of high-speed train on dynamic performance of axle box bearing[J]. Vehicle System Dynamics, 2019, 57(4): 543-563. doi: 10.1080/00423114.2018.1473615 [46] WANG Z, SONG Y, YIN Z, et al. Random response analysis of axle-box bearing of a high-speed train excited by crosswinds and track irregularities[J]. IEEE Transactions on Vehicular Technology, 2019(99): 10607-10617. [47] WANG Z, ALLEN P, MEI G, et al. Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(9): 1385-1406. doi: 10.1080/00423114.2019.1626013 [48] 王超. 高铁圆锥滚子轴承滚子与滚道间的接触分析[J]. 北京交通大学学报, 2017, 41(4): 91-97. doi: 10.11860/j.issn.1673-0291.2017.04.013 WANG C. Contact analysis between roller and raceway of tapered roller bearing of high-speed rail[J]. Journal of Beijing Jiaotong University, 2017, 41(4): 91-97. doi: 10.11860/j.issn.1673-0291.2017.04.013 [49] 赵方伟. 高速动车组轴箱轴承接触模型的建立与分析[J]. 轴承, 2019(3): 1-6. ZHAO F W. Establishment and analysis on contact model of axle box bearings for high speed EMU[J]. Beraing, 2019(3): 1-6. [50] HOU Y, WANG X, QUE H, et al. Variation in contact load at the most loaded position of the outer raceway of a bearing in high-speed train gearbox[J]. Acta Mechanica Sinica, 2021, 37(11): 1683-1695. doi: 10.1007/s10409-021-01141-8 [51] 杨天蕴, 丁千, 郭涛, 等. 动车组转向架轴承局部损伤振动特性分析[J]. 振动. 测试与诊断, 2016, 36(4): 665-673+808. YANG T Y, DING Q, GUO T, et al. Vibration characteristics analysis of localized fault on emu train bogie bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 665-673+808. [52] 杜志伟, 甄广川, 田冉, 等. 高速动车组轴箱轴承故障动态特性仿真分析[J]. 铁道技术监督, 2021, 49(9): 31-36+41. DU Z W, ZHEN G C, TIAN R, et al. Simulation analysis on dynamic characteristics of axle box bearing failure of high-speed EMU[J]. Railway Quality Control, 2021, 49(9): 31-36+41. [53] 汤武初, 陈光东, 孙玉超, 等. 基于ANSYS/LS-DYNA高速列车轴箱轴承动力学分析与故障模拟[J]. 现代机械, 2015(5): 5-10. TANG W C, CHEN G D, SUN Y C, et al. Dynamic research and fault simulation on high-speed railway axle box bearings based on ANSYS/LS-DYNA[J]. Modern Manufacturing, 2015(5): 5-10. [54] 张火车. 高速列车轴箱轴承故障仿真及试验研究[D]. 大连: 大连交通大学, 2017. ZHANG H C. Fault simulation and experimental study for axle box bearing of high speed EMUs[D]. Dalian: Dalian Jiaotong University, 2017. [55] LIU J. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J]. Journal of Sound and Vibration, 2020, 469: 115144. doi: 10.1016/j.jsv.2019.115144 [56] LIU J, DU S. Dynamic analysis of a high-speed railway train with the defective axle bearing[J]. International Journal of Acoustics and Vibration, 2020, 25(4): 525-531. doi: 10.20855/ijav.2020.25.41701 [57] LIU J, LI X, YU W. Vibration analysis of the axle bearings considering the combined errors for a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-body Dynamics, 2020, 234(3): 481-497. doi: 10.1177/1464419320917235 [58] 刘国云, 曾京, 戴焕云, 等. 考虑轴箱轴承表面波纹度的高速车辆振动特性分析[J]. 机械工程学报, 2016, 52(14): 147-156. doi: 10.3901/JME.2016.14.147 LIU G Y, ZENG J, DAI H Y, et al. Vibration performance of high-speed vehicles under axle box bearing surface waviness[J]. Journal of Mechanical Engineering, 2016, 52(14): 147-156. doi: 10.3901/JME.2016.14.147 [59] 刘国云, 曾京, 罗仁, 等. 轴箱轴承缺陷状态下的高速车辆振动特性分析[J]. 振动与冲击, 2016, 35(9): 37-42+51. LIU G Y, ZENG J, LUO R, et al. Vibration performance of high-speed vehicles with axle box bearing defects[J]. Journal of Vibration and Shock, 2016, 35(9): 37-42+51. [60] 汤武初, 王敏杰, 陈光东, 等. 高速列车故障轴箱轴承的温度分布研究[J]. 铁道学报, 2016, 38(7): 50-56. doi: 10.3969/j.issn.1001-8360.2016.07.007 TANG W C, WANG M J, CHEN G D, et al. Analysis on temperature distribution of failure axle box bearings of high speed train[J]. Journal of the China Railway Society, 2016, 38(7): 50-56. doi: 10.3969/j.issn.1001-8360.2016.07.007 [61] 胡飞. 列车轴承故障轨边声学检测系统关键技术研究[D]. 合肥: 中国科学技术大学, 2013. Hu F. Research on the key techniques of the wayside acoustic defective train bearing detector system[D]. Hefei: University of Science and Technology of China, 2013. [62] European Committee for Standardization. BS EN 12082: 2017 railway applications-axleboxes-performance testing[S]//Technical Committee CEN/TC 256. British: BSI Standards Publication, 2017. [63] BAMBARA J, 吴礼本. 美国热轴探测器的发展简况[J]. 国外铁道车辆, 1990(4): 8. BAMBARA J, WU L B. Development of hot box detector in USA[J]. Foreign Rolling Stock, 1990(4): 8. [64] 易彩. 高速列车轮对轴承状态表征与故障诊断方法研究[D]. 成都: 西南交通大学, 2015. YI C. State characterization and fault diagnosis research on wheel bearing of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2015. [65] SOUTHERN C, RENNISON D, KOPKE U. RailBAM-An advanced bearing acoustic monitor: initial operational performance results[C]//CORE 2004: New Horizons for Rail. Darwin, NT: Railway Technical Society of Australasia, 2004: 1-7. [66] 聂晔. 动车组转向架轴承可靠性分析与故障诊断的技术研究[D]. 长沙: 中南大学, 2011. Nie Y. Technical research on reliability analysis and fault diagnosis of bearings for bogie of EMUs[D]. Changsha: Central South University, 2011. [67] OWEN R. No bearing on acoustics? Think again[J]. Acoustics Bulletin, 2014, 39(4): 35-37. [68] HEINZ KURZ, 阎锋, 李国平. 为德国联邦铁路制造的新一代电动车组——ICE3和ICE-T[J]. 国外铁道车辆, 2001(3): 25-31+35. HEINZ KURZ, YAN F, LI G P. ICE 3 and ICE-T — A new generation of emus for german federal railway[J]. Foreign Rolling Stock, 2001(3): 25-31+35. [69] 林能祥. 声音诊断技术在铁路客车滚动轴承检修中的应用[J]. 海峡科学, 2015(3): 31-32. LIN N X. Application of sound diagnosis technology in rolling bearing maintenance of railway passenger cars[J]. Straits Science, 2015(3): 31-32. [70] 雷亚国. 混合智能技术及其在故障诊断中的应用研究[D]. 西安: 西安交通大学, 2007. LEI Y G. Research on hybrid intelligent technique and its applications in fault diagnosis[D]. Xian: Xian Jiaotong University, 2007. [71] ZHANG Z Q, LI G L, WANG H D, et al. Investigation of rolling contact fatigue damage process of the coating by acoustics emission and vibration signals[J]. Tribology International, 2012, 47: 25-31. doi: 10.1016/j.triboint.2011.10.002 [72] JANTUNEN E. How to diagnose the wear of roiling element bearings based on indirect condition monitoring methods[J]. International Journal of Comadem, 2006, 9(3): 24-38. [73] HARVEY T J, WOOD R, POWRIE H. Electrostatic wear monitoring of rolling element bearings[J]. Wear, 2007, 263(7-12): 1492-1501. doi: 10.1016/j.wear.2006.12.073 [74] DJEBALA A, OUELAA N, HAMZAOUI N. Detection of rolling bearing defects using discrete wavelet analysis[J]. Meccanica, 2008, 43(3): 339-348. doi: 10.1007/s11012-007-9098-y [75] ZHANG Q, DING J, ZHAO W. An adaptive boundary determination method for empirical wavelet transform and its application in wheelset-bearing fault detection in high-speed trains[J]. Measurement, 2021, 171(1): 108746. [76] 韩俊臣, 崔利通, 李晓峰, 等. 动车组轴承异音故障诊断与研究[J]. 机车电传动, 2020, (1): 149-153. HAN J C, CUI L T, LI X F, et al. Diagnosis and study on abnormal noise of emus bearing[J]. Electric Drive for Locomotives, 2020, (1): 149-153. [77] 李佳睿. 动车组轴箱轴承早期故障诊断算法研究[D]. 北京: 北京交通大学, 2017. LI J R. Research on early fault diagnosis algorithm for the bearings of the axle box of EMU[D]. Beijing: Beijing Jiaotong University, 2017. [78] 李佳睿, 岳建海. 基于HHT及共振解调方法的动车组走行部轴箱轴承故障诊断算法[J]. 北京交通大学学报, 2017, 41(4): 85-90. doi: 10.11860/j.issn.1673-0291.2017.04.012 LI J R, YUE J H. Fault diagnosis algorithm for the axle box bearing of walking unit in EMU based on HHT and resonance demodulation method[J]. Journal of Beijing Jiaotong University, 2017, 41(4): 85-90. doi: 10.11860/j.issn.1673-0291.2017.04.012 [79] ZHUANG Z, DING J, TAN A C, et al. Fault detection of high-speed train wheelset bearing based on impulse-envelope manifold[J]. Shock and Vibration, 2017, 2017: 2104720. [80] 岳建海, 林恩田. 基于EMD的动车组滚动轴承故障诊断的研究[C]// 铁路车辆轮轴技术交流会论文集. 大连: [s.n.], 2016: 259-264. YUE J H, LIN E T. Research on emd-based fault diagnosis of rolling bearings in EMUs[C]// Proceedings of the Railway Vehicle Wheel Axle Technology Conference. Dalian: [s.n.], 2016: 259-264. [81] 刘良峰. 动车组机械传动系统轴承振动信号分析与故障诊断[D]. 北京: 北京交通大学, 2014. LIU L F. Electric multiple unit mechanical transmission bearing vibration signal analysis and fault diagnosis[D]. Beijing: Beijing Jiaotong University, 2014. [82] 李欢欢. 动车组机械传动系统轴承故障检测方法研究[D]. 北京: 北京交通大学, 2014. LI H H. Study on bearing fault detection method of EMU mechanical transmission system[D]. Beijing: Beijing Jiaotong University, 2014. [83] 韩威. 基于EEMD和小波包的动车组轴箱轴承故障诊断系统的研究[D]. 兰州: 兰州交通大学, 2017. HAN W. Research on fault diagnosis system of EMU bearing based on EEMD and wavelet packet[D]. Lanzhou: Lanzhou Jiaotong University, 2017. [84] 陈胜男. 基于深度学习的动车组关键部件故障分类方法的研究[D]. 北京: 北京交通大学, 2021. CHEN S N. Research on fault classification method for key components of EMU based on deep learning[D]. Beijing: Beijing Jiaotong University, 2021. [85] 武明泽. 基于小波包分解和FPA-SVM的动车组轴箱轴承故障诊断研究[D]. 北京: 北京交通大学, 2021. WU M Z. Research on fault diagnosis of EMU axle box bearing based on wavelet packet decomposition and FPA-SVM[D]. Beijing: Beijing Jiaotong University, 2021. [86] 余忠潇. 基于LCD和模糊聚类的滚动轴承故障诊断方法研究[D]. 石家庄: 石家庄铁道大学, 2020. YU Z X. Research on fault diagnosis method of rolling bearing based on LCD and fuzzy clustering[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. [87] 杨帅. 基于模态分解技术的轴承故障诊断方法研究[D]. 石家庄: 石家庄铁道大学, 2021. YANG S. Research on bearing fault diagnosis based on modal decomposition technology[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. [88] 郭贝贝. 基于变分模态分解与熵值的滚动轴承故障诊断研究[D]. 石家庄: 石家庄铁道大学, 2021. GUO B B. Research on rolling bearing fault diagnosis based on variational mode decomposition and entropy[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. [89] 张建财. 基于轨道交通列车滚动轴承故障诊断方法研究[D]. 青岛: 青岛大学, 2020. ZHANG J C. Research on fault diagnosis method for rolling bearings of rail transit trains[D]. Qingdao: Qingdao University, 2020. [90] 潘碧琳. 基于优化共振稀疏分解和变分模式分解的动车组轴箱轴承故障诊断方法研究[D]. 北京: 中国铁道科学研究院, 2021. PAN B L. Research on fault diagnosis method of EMU axle box bearing based on optimized RSSD and VMD[D]. Beijing: China Academy of Railway Sciences, 2021. [91] 黄晨光. 基于奇异值特征提取的高速列车轴箱轴承故障诊断方法研究[D]. 成都: 西南交通大学, 2019. HUANG C G. Investigation of fault diagnosis based on singular value feature extraction for high speed train axle box bearing[D]. Chengdu: Southwest Jiaotong university, 2019. [92] 张海峰. 基于改进峭度图的动车组转向架轴承故障诊断方法研究[D]. 北京: 北京交通大学, 2020. ZHANG H F. Research on fault diagnosis of EMU bogie bearing based on improved Kurtogram[D]. Beijing: Beijing Jiaotong University, 2020. [93] 彭畅, 李海涛, 李宁, 等. 基于谱峭度图和递归定量分析的动车组轴箱轴承故障识别与分类方法研究[C]// 铁路车辆轮轴技术交流会论文集. 大连: [s.n.], 2016: 253-258. PENG C, LI H T, LI N, et al. Research on fault identification and classification method for axle box bearings of emus based on spectral kurtosis graph and recursive quantitative analysis[C]// Proceedings of the Railway Vehicle Wheel Axle Technology Conference. Dalian: [s.n.], 2016: 253-258. [94] 葛洪胜. 基于共振解调法和声发射法的圆锥滚子轴承故障分析研究[D]. 大连: 大连交通大学, 2020. GE H S. Research on fault analysis of tapered roller bearings and bearings based on resonance demodulation and acoustic emission[D]. Dalian: Dalian Jiaotong University, 2020. [95] 刘文朋, 杨绍普, 李强, 等. 一种自适应共振解调方法及其在铁路轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(18): 86-93. LIU W M, YANG S P, LI Q, et al. Adaptive resonance demodulation method and its application in the fault diagnosis of railway bearings[J]. Journal of Vibration and Shock, 2021, 40(18): 86-93. [96] 李伟. 基于最小熵反褶积的动车组牵引电动机轴承故障诊断方法[J]. 轴承, 2021(12): 56-60+64. LI W. Fault diagnosis method for EMU traction motor bearings based on minimum entropy deconvolution[J]. Bearing, 2021(12): 56-60+64. [97] CHENG Y, WANG Z, ZHANG W. A novel condition-monitoring method for axle-box bearings of high-speed trains using temperature sensor signals[J]. IEEE Sensors Journal, 2019, 19(1): 205-213. doi: 10.1109/JSEN.2018.2875072 [98] DENG F, LIU C, LIU Y, et al. A hybrid svd-based denoising and self-adaptive tmsst for high-speed train axle bearing fault detection[J]. Sensors, 2021, 21(18): 6025. doi: 10.3390/s21186025 [99] DING J. Fault detection of a wheelset bearing in a high-speed train using the shock-response convolutional sparse-coding technique[J]. Measurement, 2018, 117: 108-124. doi: 10.1016/j.measurement.2017.12.010 [100] HOU D, QI H, LUO H, et al. Comparative study on the use of acoustic emission and vibration analyses for the bearing fault diagnosis of high-speed trains[J]. Structural Health Monitoring-An International Journal, 2022, 21(4): 1518-1540. doi: 10.1177/14759217211036025 [101] 舒敏. 动车组轴箱轴承健康状态评估与趋势分析[D]. 北京: 北京交通大学, 2018. SHU M. Health assessment and trend analysis of axle box bearing of high speed EMU[D]. Beijing: Beijing Jiaotong University, 2018. [102] 杨帅, 郝如江. 基于CEEMDAN-SVM的高铁轴承故障诊断研究[J]. 石家庄铁道大学学报(自然科学版), 2021, 34(2): 116-122. YANG S, HE R J. Research on high speed rail bearing fault diagnosis based on CEEMDAN-SVM[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2021, 34(2): 116-122. [103] 邢成梁. 动车组转向架健康评估及故障诊断[D]. 兰州: 兰州交通大学, 2020. XING C L. EMU bogie health assessment and fault diagnosis[D]. Lanzhou: Lanzhou Jiaotong University, 2020. [104] 张宇. 高速列车轴承故障诊断系统的研究[D]. 大连: 大连交通大学, 2017. ZHANG Y. Study on fault diagnosis system of high-speed train bearings[D]. Dalian: Dalian Jiaotong University, 2017. [105] 邸伟强. 高速列车自动化生产线智能监测技术—滚动轴承故障诊断方法的研究与实现[D]. 北京: 北京交通大学, 2018. DI W Q. Intelligent monitoring technology for high speed train automatic production line-research and realization of rolling bearing fault diagnosis method[D]. Beijing: Beijing Jiaotong University, 2018. [106] 陈耀华. 面向高速动车组牵引电机轴承故障预警的研究[D]. 北京: 北京交通大学, 2020. CHEN Y H. Research on bearing fault early warning of traction motor for high speed EMU[D]. Beijing: Beijing Jiaotong University, 2020. [107] 赵敬娇. 基于LSTM的轴承故障诊断方法研究[D]. 石家庄: 石家庄铁道大学, 2021. ZHAO J J. Research on bearing fault diagnosis method based on LSTM[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. [108] 刘冠男, 常振臣, 高明亮, 等. 基于长短期记忆网络的动车组轴箱轴承故障诊断预测模型研究[J]. 城市轨道交通研究, 2022, 25(2): 86-91. LIU G N, CHANG Z C, GAO M L, et al. Fault diagnosis model for EMU bogie bearing based on LSTM[J]. Urban Mass Transit, 2022, 25(2): 86-91. [109] 荆云建. 基于改进型卷积神经网络的动车组滚动轴承故障诊断方法研究[D]. 北京: 北京交通大学, 2019. JIN Y J. Research on fault diagnosis method for rolling bearing of EMU based on improved convolutional neural network[D]. Beijing: Beijing Jiaotong University, 2019. [110] 周红全. 基于深度学习的动车组轴箱轴承故障诊断与系统开发[D]. 北京: 北京交通大学, 2021. ZHOU Q H. Fault diagnosis and system development of axle box bearing of EMU based on deep learning[D]. Beijing: Beijing Jiaotong University, 2021. [111] LUO H, BO L, PENG C, et al. Fault diagnosis for high-speed train axle-box bearing using simplified shallow information fusion convolutional neural network[J]. Sensors, 2020, 20(17): 4930. doi: 10.3390/s20174930 [112] PENG D, LIU Z, WANG H, et al. A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains[J]. IEEE Access, 2019, 7: 10278-10293. doi: 10.1109/ACCESS.2018.2888842 [113] ZOU Y, ZHANG Y, MAO H. Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning[J]. Alexandria Engineering Journal, 2021, 60(1): 1209-1219. doi: 10.1016/j.aej.2020.10.044 [114] 王晓东. 基于迁移学习的动车组轴承故障诊断方法研究[D]. 北京: 北京交通大学, 2021. WANG X D. Research on fault diagnosis of EMU bearings based on transfer learning[D]. Beijing: Beijing Jiaotong University, 2021. [115] 施文锐. 基于深度学习的滚动轴承早期故障诊断研究[D]. 石家庄: 石家庄铁道大学, 2021. SHI W R. Research on early fault diagnosis of rolling bearings based on deep learning[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. [116] 李永健. 高速列车轴箱轴承智能故障诊断技术研究[D]. 成都: 西南交通大学, 2017. LI Y J. Research on intelligent fault diagnosis technique of axle box bearing of high speed train[D]. Chengdu: Southwest Jiaotong University, 2017. [117] 徐立成. 基于shapelets学习算法的动车组轴箱轴承早期故障识别方法研究[D]. 北京: 北京交通大学, 2020. XU L C. Research on the method of early fault recognition of axlebox bearing of EMU based on shapelets learning algorithm[D]. Beijing: Beijing Jiaotong University, 2020. [118] 宋志坤, 徐立成, 胡晓依, 等. 基于改进型shapelets算法的动车组轴箱轴承故障诊断方法研究[J]. 仪器仪表学报, 2021, 42(2): 66-74. SONG Z K, XU L C, HU X Y, et al. Research on fault diagnosis method of axle box bearing of EMU based on improved shapelets algorithm[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 66-74. [119] LUNDBERG G, PALMGREN A. Dynamic capacity of rolling bearings[J]. Acta Polytechnica. Mechanical Engineering Series, 1947, 1(3): 5-50. [120] ISO Technical Committees. ISO 281 method of calculating dynamic load ratings and rating life of rolling bearings[S]// Technical Committee ISO/TC 4. Geneva: International Organization for Standardization, 2007. [121] 刘德昆, 李强, 王曦, 等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报, 2016, 52(22): 45-54. doi: 10.3901/JME.2016.22.045 LIU D K, LI Q, WANG X, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. doi: 10.3901/JME.2016.22.045 [122] 李震, 商慧玲, 张旭, 等. 高速动车轴箱轴承疲劳寿命计算方法[J]. 铁道学报, 2020, 42(3): 55-62. doi: 10.3969/j.issn.1001-8360.2020.03.007 LI Z, SHANG H L, ZHANG X, et al. Fatigue life calculation method for axle box bearing of high-speed train[J]. Journal of the China Railway Society, 2020, 42(3): 55-62. doi: 10.3969/j.issn.1001-8360.2020.03.007 [123] 杨晨, 池茂儒, 吴兴文, 等. 考虑车轮多边形演化的动车组轴箱轴承载荷及寿命分析[EB/OL][2022-03-21] http://kns.cnki.net/kcms/detail/32.1349.TB.20220318.0954.002.html. YANG C, CHI M R, WU X W, et al. Analysis of load and life of EMU axle box bearing considering wheel polygonization evolution [EB/OL][2022-03-21] http://kns.cnki.net/kcms/detail/32.1349.TB.20220318.0954.002.html. [124] 韩光旭, 周殿买, 黄志辉. 高速变轨距转向架轴箱轴承选型及寿命评估[J]. 机车电传动, 2018(4): 6-9. HAN G X, ZHOU D M, HUANG Z H. Type selection and life assessment of high-speed gauge-changeable bogie axle box bearing[J]. Electric Drive for Locomotives, 2018(4): 6-9. [125] 李晓阳. 动车组牵引电机轴承游隙对载荷的影响及轴承寿命分析[D]. 北京: 北京交通大学, 2019. LI X Y. Influence of clearance on bearing load and analysis of bearing life of CRH traction motor[D]. Beijing: Beijing Jiaotong University, 2019. [126] 郭正松. 高铁轴承承载能力与疲劳寿命研究[D]. 上海: 上海应用技术学院, 2015. GUO Z S. Research on bearing capacity and fatigue life of high-speed railway bearings[D]. Shanghai: Shanghai Institute of Technology, 2015. [127] 黄运生. 波动冲击载荷下高速列车轴箱轴承疲劳寿命研究[D]. 洛阳: 河南科技大学, 2017. HUANG Y S. Research on fatigue life of high-speed train axle-box bearing under fluctuant impact load[D]. Luoyang: Henan University of Science and Technology, 2017. [128] 郑静. 高速列车轴箱轴承疲劳寿命研究[D]. 北京: 北京交通大学, 2014. ZHENG J. Study on the fatigue life of the axle box bearing for high speed train[D]. Beijing: Beijing Jiaotong University, 2014. [129] 慕鑫宇. 动车组轴箱轴承保持架振动特性与寿命分析[D]. 北京: 北京交通大学, 2021. MU X Y. Vibration performance and life analysis of axle box bearing cage for the EMU[D]. Beijing: Beijing Jiaotong University, 2021. [130] 王光斌. 高铁牵引电机圆柱滚子轴承保持架寿命分析[D]. 洛阳: 河南科技大学, 2019. WANG G B. Fatigue life analysis of cylinder roller bearing cage for the high-speed rail traction engine[D]. Luoyang: Henan University of Science and Technology, 2019. [131] LIU D, LI Q, HU W, et al. Fatigue life prediction of the axle box bearings for high-speed trains[J]. Dyna, 2017, 92(5): 538-544. [132] 杨凯, 王永武, 张钢, 等. 非金属夹杂物对高铁轴承疲劳寿命的影响[J]. 计量与测试技术, 2019, 46(2): 24-28. doi: 10.15988/j.cnki.1004-6941.2019.2.009 YANG K, WANG Y W, ZHANG G, et al. Effect of non-metallic inclusions on the fatigue life of high-speed railway bearing[J]. Metrology & Measurement Technique, 2019, 46(2): 24-28. doi: 10.15988/j.cnki.1004-6941.2019.2.009 [133] 杨凯, 王永武, 马灿阳, 等. 结构设计参数对高铁轴承疲劳寿命的影响[J]. 工业控制计算机, 2019, 32(5): 108-110+113. YANG K, WANG Y W, MA C Y, et al. Effect of structural design parameters on fatigue life of high-speed railway bearing[J]. Industrial Control Computer, 2019, 32(5): 108-110+113. [134] 蔡森, 杨凯, 王永武, 等. 基于接触应力的高铁轴承疲劳寿命预测[J]. 工业控制计算机, 2018, 31(8): 88-89+92. doi: 10.3969/j.issn.1001-182X.2018.08.039 CAI S, YANG K, WANG Y W, et al. Prediction of fatigue life of high speed railway bearing based on contact stress[J]. Industrial Control Computer, 2018, 31(8): 88-89+92. doi: 10.3969/j.issn.1001-182X.2018.08.039 [135] 李永华, 智鹏鹏, 宫琦, 等. 高速动车组轴箱轴承疲劳可靠性分析[J]. 计算机仿真, 2018, 35(3): 88-92. LI Y H, ZHI P P, GONG Q, et al. Fatigue reliability analysis for axle box bearing of high speed EMU[J]. Computer Simulation, 2018, 35(3): 88-92. [136] 李永华, 智鹏鹏, 陈秉智. 动车组轴箱轴承模糊可靠性寿命评估[J]. 大连交通大学学报, 2017, 38(4): 104-109+115. LI Y H, ZHI P P, CHEN B Z. Effect of modification on dynamic characteristics of locomotive gear system[J]. Journal of Dalian Jiaotong University, 2017, 38(4): 104-109+115. [137] 刘嘉庆. 基于多源信息融合的高铁轴承疲劳寿命可靠性研究[D]. 成都: 电子科技大学, 2021. LIU J Q. Fatigue life reliability research of high-speed railway bearing based on multi-source information fusion[D]. Chengdu: University of Electronic Science and Technology of China, 2021. [138] 袁韬. 动车组轴箱轴承剩余寿命预测方法研究[D]. 兰州: 兰州交通大学, 2019. YUAN T. Study on prediction method of remaining useful life for axle box bearings in EMU[D]. Lanzhou: Lanzhou Jiaotong University, 2019. [139] 高明亮, 赵明, 高珊, 等. 动车组轴箱轴承在线监测可靠性评估模型研究[J]. 城市轨道交通研究, 2022, 25(2): 22-25. GAO M L, ZHAO M, GAO S, et al. Online reliability evaluation model of emu axle box bearing[J]. Urban Mass Transit, 2022, 25(2): 22-25. [140] XU G, HOU D, QI H, et al. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life[J]. Mechanical Systems and Signal Processing, 2021, 146: 107050. doi: 10.1016/j.ymssp.2020.107050 [141] 王健. 动车组牵引电机风机轴承剩余寿命研究[D]. 长春: 吉林大学, 2020. WANG J. Research on remaining life of fan bearing of electrical multiple unit traction motor[D]. Changchun: Jilin University, 2020. [142] 曾宇. 滚动轴承多域退化表征指标提取及寿命预测研究[D]. 北京: 北京交通大学, 2019. ZENG Y. Research on extraction of multi-domain degradation characterization indicators and life prediction of rolling bearing[D]. Beijing: Beijing Jiaotong University, 2019. [143] 曲松. 动车组牵引电机中风机轴承寿命的预测评估方法[D]. 长春: 吉林大学, 2020. QU S. Prediction and assessment method of fan bearing life in traction motor of EMU[D]. Changchun: Jilin University, 2020. [144] 牛齐明, 刘峰, 张奕黄. 基于PHM的高速铁路牵引电机滚动轴承健康状态预测[J]. 铁道学报, 2020, 42(7): 95-101. NIU Q M, LIU F, ZHANG Y H. Health condition prediction of rolling element bearings of high-speed train traction motor based on PHM[J]. Journal of the China Railway Society, 2020, 42(7): 95-101. [145] 何茂. 基于改进高斯混合模型与优化RVM的滚动轴承剩余寿命预测方法研究[D]. 成都: 电子科技大学, 2021. HE M. Research on bearing remaining useful life prediction method based on improved gaussian mix model and optimal relevance vector machine[D]. Chengdu: University of Electronic Science and Technology of China, 2021. [146] 庞碧涛, 董美娟, 徐玲玲. 高速铁路轴箱轴承试验技术研究[C]// 铁路车辆轮轴技术交流会论文集. 大连: [s.n.], 2016: 199-203. PANG B T, DONG M J, XU L L. Research on testing technology of high speed railway axle box bearings[C]// Proceedings of the Railway Vehicle Wheel Axle Technology Conference. Dalian: [s.n.], 2016: 199-203. [147] 牛治慧. 高速列车轴箱系统振动特性及试验研究[D]. 长春: 吉林大学, 2019. NIU Z H. Vibration characteristics and experimental study of axle box system of high speed train[D]. Changchun: Jilin University, 2019. [148] 赵方伟, 张弘, 张澎湃, 等. 基于实测载荷的动车组轴箱轴承试验谱编制研究[C]// 2019铁道车辆轮轴学术交流会论文集. 北京: [s.n.], 2019: 255-258. ZHAO F W, ZHANG H, ZHANG P P, et al. Research on compilation of test spectrum for axle box bearings of multiple unit based on measured load[C]// Proceedings of the 2019 Academic Conference on Railway Vehicle Axles. Beijing: [s.n.], 2019: 255-258.