-
具体词和抽象词在大脑的表征差异引起了认知科学和神经科学领域的广泛关注。具体词指称可以通过感官感觉到的所指物,表征感觉运动信息,具有高想象性;抽象词指称无法直接感知的想法或精神状态,表征基于语言的信息,具有低想象性[1]。语言病理研究表明,两种词类的加工有着不同的神经机制。对部分失语症患者和诵读困难患者以及顶叶下部受损的阿尔茨海默患者而言,抽象词的加工难度大于具体词[2-3]。相反地,伴有颞叶下部损伤的语义痴呆患者表现出对具体词加工的难度大于抽象词,因为颞叶下部是视觉联合皮层的重要区域,该区域的受损可能会影响到具体词的加工[2, 4]。
具体性效应促使研究者探究两种词类加工的神经机制的差异。具体性效应指具体词比抽象词的加工难度更低,加工效果也更好,具体性效应也反映抽象词和具体词加工的差异。不同的理论被提出以解释该效应。双编码理论[1]认为,具体词在两个独立但又相互关联的系统——主要位于左半球的语言加工系统和主要位于右半球的意象加工系统——同时进行加工;而抽象词则主要在位于左半球的语言加工系统中加工。语境有效性理论否认两种词类加工效应的不同是由不同的神经机制造成的,而认为是对语境信息的利用程度不同造成的[5]。还有理论认为,具体词和抽象词的表征框架不同,抽象词通过相互关联的方式组织起来,而具体词通过相似性的类别组织起来[6]。具身认知理论认为,语义的表征是通过对该词语在感觉运动、社会情感以及内在感受等方面的仿真实现的,抽象词和具体词的差异在于表征权重的差异[7]。
大量功能性磁共振成像(Functional Magnetic Resonance imaging, fMRI)方面的研究深入探究了其背后的神经机制,比较集中地表明与具体词相比,抽象词更多激活了负责词汇语义表征和控制的额叶和颞叶区域;而与抽象词相比,具体词激活了负责感知和心理意象加工左侧的枕叶和顶叶[8–11]。元分析认为相比具体词,抽象词更多激活了额下回和颞中回,相反,具体词更多激活后扣带、楔前叶、梭状回以及海马旁回[12]。然而相关研究得到的结果并不完全一致,有研究指出具体词和抽象词都激活了位于左侧的多模态联合脑区,包括与语言加工相关的左侧颞叶。具体词更多激活了双侧的角回以及背外侧前额叶皮层,而抽象词更多激活了与语音加工和语言工作记忆相关的左侧额下回区域[13]以及左侧前额叶皮层,特别是与顶叶相连的额极部分,该部分调节抽象词的关联性加工[14]。但失语症患者加工抽象词和具体词的功能性磁共振成像扫描结果显示,抽象词激活了语言区域,而具体词额外激活了多模态联合区域[15]。还有部分研究没有发现具体词在任何脑区有更大的激活[16]。
观察两种词类加工的脑活动的差异在一定程度上揭示了两者加工的脑机制的不同,但对具体性效应脑机制的探究并不足以描述单个词类加工的神经机制。一项PET研究显示,与静息态相比,具体词加工任务激活了位于双侧外侧裂的颞上回,包括颞极和赫氏回,双侧的颞下回后部以及梭状回后部[17]。另一项fMRI实验显示,与静息态相比,具体词加工显著激活了双侧顶上小叶、双侧梭状回、左侧额下回、前扣带、左侧颞中回以及右后侧颞上回等。而与静息态相比,抽象词加工激活双侧梭状回、双侧额下回、左侧顶下小叶、右侧顶上小叶、右侧颞上回以及左侧颞中回等[16]。类似实验中使用的材料主要集中于印欧语系,特别是英语,极少使用汉语材料。英语是表音文字,书写位是音位;汉语是表意文字,书写位是词素。汉字与意义有更直接的关联。目前以汉语词汇为实验材料的ERP研究发现,相比于抽象词,具体词加工在刺激呈现200~300 ms的时间窗内在左半球诱发出更大的负波N170,该波幅是视知觉加工早期的ERP成分[18],这个时间差较之前以英文为材料的实验更短,说明中文表达的语义信息被更早地激活[19-20]。在300~500 ms时间窗内,中文具体名词比抽象名词在额叶和中央顶叶部位诱发了更大的N400成分[19],该成分表明在语义信息上与先前语境整合[21],说明汉语具体词加工有更大的语境方面的支持。
目前对具体词和抽象词的加工,以汉语词汇为实验材料的研究很少,实验任务也主要是词汇判断,并且主要的实验手段为ERP。本研究采用自由回忆范式,探究汉语具体词和抽象词记忆的神经机制。记忆加工有别于词汇判断任务,词汇判断任务是孤立任务,而在记忆加工任务中,单个的词会被相互关联起来,因此背后的神经机制也有所不同。fMRI可以有效反映特定任务在全脑范围的激活情况,并进一步通过软件分析形成相应的激活图像来定位与认知任务相关的脑区,具有较高的时空分辨率,能够更精确地观察到大脑的激活状况[22]。
本研究使用fMRI探究中文具体词和抽象词的情景记忆加工过程中的脑激活情况。词汇的情景记忆加工涉及与词汇相关的语义和情景记忆的提取和关联,是较词汇判断更深层次的加工。本文的研究问题是中文具体词和抽象词的情景记忆加工在脑激活的神经机制方面是否有差异和共同点。
-
本文研究了抽象词和具体词记忆的行为表现及其神经基础。被试完成两种词的记忆编码和自由回忆,在编码阶段进行磁共振扫描。实验结果分为两部分:行为和大脑针对不同任务激活的结果。自由回忆的正确率使用SPSS 20进行配对样本t检验。
-
自由回忆阶段,被试被要求在纸上写下所记住的在记忆编码阶段呈现的单词,可以忽略顺序问题。结果表明,具体词的自由回忆的正确率显著高于抽象词自由回忆的正确率(t=5.216, p<0.001),符合具体性效应,说明具体词比抽象词更容易加工和记忆。
-
两种词类记忆编码共同激活的脑区包括左侧枕下回、左侧额上回、左侧辅助运动区、左侧角回、右侧舌回、右侧颞下回、双侧梭状回以及双侧额下回(如表1与图2所示)。将每两个mini-block间隔时间的大脑活动水平作为基线,执行任务时,大脑活动水平高于基线水平的情况视作正激活,大脑活动水平低于基线水平的情况视作负激活。具体词显著正激活了左侧枕下回、左侧额上回、左侧顶下小叶、右侧颞下回、右侧梭状回以及左侧中央旁小叶(表2和图3);显著负激活了双侧楔前叶(表2和图4)。与基线相比抽象词显著正激活了双侧梭状回、双侧颞中回、双侧舌回、左侧额上回以及右侧额下回(表3和图5);没有发现抽象词记忆显著负激活的脑区。
表 1 具体词和抽象词记忆编码共同激活的脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 791 −33 −84 −12 15.07 枕下回 左 −21 −90 −12 13.72 梭状回 左 −39 −60 −18 12.06 舌回 右 543 24 −84 −9 13.66 颞下回 右 42 −60 −12 12.36 梭状回 右 39 −54 −18 10.61 额上回 左 616 −12 48 42 12.35 内侧额上回 左 −6 42 48 10.51 辅助运动区 左 −12 21 63 10.27 额下回眶部 左 117 −42 30 −15 10.44 额下回三角区 左 −54 27 15 8.06 额下回三角区 左 −51 33 3 7.63 角回 左 207 −39 −63 21 9.84 额下回三角区 右 95 51 27 12 7.38 额下回眶部 右 51 27 −6 6.57 额下回三角区 右 51 39 9 6.34 颞上回 左 67 −54 −6 −12 7.25 表 2 具体词记忆对比基线的激活脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 1183 −33 −84 −12 15.07 枕下回 左 −21 −90 −12 13.72 梭状回 左 −39 −60 −18 12.06 舌回 右 670 24 −84 −9 13.66 颞下回 右 42 −60 −12 12.36 梭状回 右 39 −54 −18 10.61 额上回 左 718 −12 48 42 12.35 内侧额上回 左 −6 42 48 10.51 辅助运动区 左 −12 21 63 10.27 额下回 左 314 −42 30 −15 10.44 额下回 左 −54 27 15 8.06 额下回 左 −51 33 6 7.65 颞中回 左 300 −39 −63 21 9.84 枕中回 左 −33 −75 27 6.14 海马 右 115 30 −9 −18 7.57 颞上极 右 33 3 −21 6.21 杏仁核 右 24 0 −18 6.08 额下回 右 125 51 27 12 7.38 额下回 右 51 27 −6 6.57 额下回 右 51 39 9 6.34 颞上回 左 76 −54 −6 −12 7.25 颞中回 右 45 57 −3 −15 6.67 中央旁小叶 左 89 −3 −24 66 6.54 中央旁小叶 左 −9 −27 75 6.16 楔前叶 左 620 −9 −69 33 12.35 楔前叶 右 9 −69 39 11.09 楔前叶 右 18 −63 27 10.53 表 3 抽象词记忆对比基线的激活脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 1255 −33 −84 −12 16.34 舌回 左 −24 −87 −15 15.70 梭状回 左 −39 −60 −18 14.05 梭状回 右 607 42 −60 −15 14.00 枕下回 右 33 −78 −9 12.11 舌回 右 24 −84 −9 10.68 内侧额上回 左 997 −6 42 48 12.11 额上回 左 −12 51 36 10.79 额上回 左 −21 33 54 9.16 额下回 左 120 −39 30 −15 8.93 额下回 左 −51 30 −3 6.59 额下回 左 −57 27 6 6.33 颞中回 左 122 −57 0 −18 8.76 颞中回 左 −57 −15 −9 6.47 颞下回 左 −48 3 −33 6.35 额下回 右 161 42 30 −12 7.79 额下回 右 51 33 −3 7.62 额下回 右 54 33 9 7.06 楔前叶 左 118 −3 −51 15 6.95 后扣带 左 −6 −51 24 6.60 中扣带 左 −3 −36 33 5.81 颞中回 右 32 57 3 −21 5.94 颞上回 右 54 −9 −9 5.67
Neural Mechanism Subserving Memory of Chinese Abstract and Concrete Words
-
摘要: 具体词和抽象词加工的神经机制是认知神经科学的研究热点,但过往的相关研究主要集中于拼音文字,发现抽象词加工更多激活语言系统,而具体词加工更多激活感知觉系统。该文使用功能性磁共振成像,通过记忆−自由回忆任务,探究了汉语具体词和抽象词加工在记忆编码过程中的大脑活动情况,结果是两种词类的记忆加工都主要激活了颞枕皮层和左侧额下回。除此之外,抽象词记忆更多激活了默认脑网络,而具体词记忆更多激活了感觉运动皮层。结果表明具体词和抽象词的记忆都会激活语言和执行控制系统,但也会依赖不同的脑区进行记忆编码。Abstract: The neural mechanism subserving the processing of abstract and concrete words is widely studied in cognitive neuroscience. The previous studies focused on the alphabetic languages, which found that the processing of abstract words relies more on verbal system and the processing of concrete words relies more on perceptual system. This study investigates the brain activity elicited by the abstract and concrete words in the process of the memory encoding with functional magnetic resonance imaging. The results are that the memory encoding of the two types of words activates temporal-occipital cortex and left inferior frontal gyrus. Besides, abstract words elicit default mode network additionally while concrete words elicit sensorimotor cortex additionally. The results indicate that the memory of the abstract and concrete words activates verbal and executive control systems, but they also rely on different systems for memory encoding.
-
表 1 具体词和抽象词记忆编码共同激活的脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 791 −33 −84 −12 15.07 枕下回 左 −21 −90 −12 13.72 梭状回 左 −39 −60 −18 12.06 舌回 右 543 24 −84 −9 13.66 颞下回 右 42 −60 −12 12.36 梭状回 右 39 −54 −18 10.61 额上回 左 616 −12 48 42 12.35 内侧额上回 左 −6 42 48 10.51 辅助运动区 左 −12 21 63 10.27 额下回眶部 左 117 −42 30 −15 10.44 额下回三角区 左 −54 27 15 8.06 额下回三角区 左 −51 33 3 7.63 角回 左 207 −39 −63 21 9.84 额下回三角区 右 95 51 27 12 7.38 额下回眶部 右 51 27 −6 6.57 额下回三角区 右 51 39 9 6.34 颞上回 左 67 −54 −6 −12 7.25 表 2 具体词记忆对比基线的激活脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 1183 −33 −84 −12 15.07 枕下回 左 −21 −90 −12 13.72 梭状回 左 −39 −60 −18 12.06 舌回 右 670 24 −84 −9 13.66 颞下回 右 42 −60 −12 12.36 梭状回 右 39 −54 −18 10.61 额上回 左 718 −12 48 42 12.35 内侧额上回 左 −6 42 48 10.51 辅助运动区 左 −12 21 63 10.27 额下回 左 314 −42 30 −15 10.44 额下回 左 −54 27 15 8.06 额下回 左 −51 33 6 7.65 颞中回 左 300 −39 −63 21 9.84 枕中回 左 −33 −75 27 6.14 海马 右 115 30 −9 −18 7.57 颞上极 右 33 3 −21 6.21 杏仁核 右 24 0 −18 6.08 额下回 右 125 51 27 12 7.38 额下回 右 51 27 −6 6.57 额下回 右 51 39 9 6.34 颞上回 左 76 −54 −6 −12 7.25 颞中回 右 45 57 −3 −15 6.67 中央旁小叶 左 89 −3 −24 66 6.54 中央旁小叶 左 −9 −27 75 6.16 楔前叶 左 620 −9 −69 33 12.35 楔前叶 右 9 −69 39 11.09 楔前叶 右 18 −63 27 10.53 表 3 抽象词记忆对比基线的激活脑区
脑区 半球 簇团大小 MNI坐标 t值 x y z 枕下回 左 1255 −33 −84 −12 16.34 舌回 左 −24 −87 −15 15.70 梭状回 左 −39 −60 −18 14.05 梭状回 右 607 42 −60 −15 14.00 枕下回 右 33 −78 −9 12.11 舌回 右 24 −84 −9 10.68 内侧额上回 左 997 −6 42 48 12.11 额上回 左 −12 51 36 10.79 额上回 左 −21 33 54 9.16 额下回 左 120 −39 30 −15 8.93 额下回 左 −51 30 −3 6.59 额下回 左 −57 27 6 6.33 颞中回 左 122 −57 0 −18 8.76 颞中回 左 −57 −15 −9 6.47 颞下回 左 −48 3 −33 6.35 额下回 右 161 42 30 −12 7.79 额下回 右 51 33 −3 7.62 额下回 右 54 33 9 7.06 楔前叶 左 118 −3 −51 15 6.95 后扣带 左 −6 −51 24 6.60 中扣带 左 −3 −36 33 5.81 颞中回 右 32 57 3 −21 5.94 颞上回 右 54 −9 −9 5.67 -
[1] PAIVIO A. Dual coding theory: Retrospect and current status[J]. Canadian Journal of Psychology, 1991, 45(3): 255-287. doi: 10.1037/h0084295 [2] YI H A, MOORE P, GROSSMAN M. Reversal of the concreteness effect for verbs in patients with semantic dementia[J]. Neuropsychology, 2007, 21(1): 9-19. doi: 10.1037/0894-4105.21.1.9 [3] GROSSMAN M, KOENIG P, DEVITA C, et al. The neural basis for category-specific knowledge: An fMRI study[J]. Neuroimage, 2002, 15: 936-948. doi: 10.1006/nimg.2001.1028 [4] BONNER M F, VESELY L, PRICE C, et al. Reversal of the concreteness effect in semantic dementia[J]. Cognitive Neuropsychology, 2009, 26(6): 568-579. doi: 10.1080/02643290903512305 [5] SCHWANENFLUGEL P J. Why are abstract concepts hard to understand?[C]//The Psychology of Word Meanings. Hillsdale, NJ: Lawrence Erlbaum Associates, 1991: 223-248. [6] CRUTCH S J, WARRINGTON E K. Abstract and concrete concepts have structurally different representational frameworks[J]. Brain, 2005, 128(3): 615-627. doi: 10.1093/brain/awh349 [7] BARSALOU L W. Grounded cognition[J]. Annual Review of Psychology, 2008, 59: 617-645. doi: 10.1146/annurev.psych.59.103006.093639 [8] KOSSLYN S M, GANIS G, THOMPSON W L. Neural foundations of imagery[J]. Nature Reviews Neuroscience, 2001, 2(9): 635-642. doi: 10.1038/35090055 [9] SACK A T. Parietal cortex and spatial cognition[J]. Behavioral Brain Research, 2009, 202: 153-161. doi: 10.1016/j.bbr.2009.03.012 [10] ACHESON D J, HAGOOT P. Stimulating the brain’s language network: Syntactic ambiguity resolution after TMS to the inferior frontal gyrus and middle temporal gyrus[J]. Journal of Cognitive Neuroscience, 2013, 25: 1664-1677. doi: 10.1162/jocn_a_00430 [11] HOFFMAN P, BINNEY R J, LAMBOM R M A. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge[J]. Cortex, 2015, 63: 250-266. doi: 10.1016/j.cortex.2014.09.001 [12] WANG J, CONDER J A, BLITZER D N, et al. Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies[J]. Human Brain Mapping, 2010, 31: 1459-1468. doi: 10.1002/hbm.20950 [13] BINDER J R, DESAI R H, GRAVES W W, et al. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies[J]. Cerebral Cortex, 2009, 19: 2767-2796. doi: 10.1093/cercor/bhp055 [14] GREEN A E, FUGELSANG J A, KRAEMER D J M, et al. Frontopolar cortex mediates abstract integration in analogy[J]. Brain Research, 2006, 1096: 125-137. doi: 10.1016/j.brainres.2006.04.024 [15] SANDBERG C, KIRAN S. Analysis of abstract and concrete word processing in persons with aphasia and age-matched neurologically healthy adults using fMRI[J]. Neurocase, 2014, 20: 361-388. doi: 10.1080/13554794.2013.770881 [16] KIEHL K A, LIDDLE P F, SMITH A M, et al. Neural pathways involved in the processing of concrete and abstract words[J]. Human Brain Mapping, 1999, 7(4): 225-233. doi: 10.1002/(SICI)1097-0193(1999)7:4<225::AID-HBM1>3.0.CO;2-P [17] MELLET E, TZOURIO N, DENIS M, et al. Cortical anatomy of mental imagery of concrete nouns based on their dictionary definition[J]. Neuroreport, 1998, 9: 803-808. doi: 10.1097/00001756-199803300-00007 [18] BOOTH J R, LU D, BURMAN D D, et al. Specialization of phonological and semantic processing in Chinese word reading[J]. Brain Research, 2006, 1071(1): 197-207. [19] ZHANG Q, GUO C Y, DING J H, et al. Concreteness effects in the processing of Chinese words[J]. Brain and Language, 2006, 96: 59-68. doi: 10.1016/j.bandl.2005.04.004 [20] TSAI P S, YU B H, LEE C Y, et al. An event-related potential study of the concreteness effect between Chinese nouns and verbs[J]. Brain Research, 2009, 1253: 149-160. doi: 10.1016/j.brainres.2008.10.080 [21] BROWN C, HAGOORT P. The processing nature of the N400: Evidence from masked priming[J]. Journal of Cognitive Neuroscience, 1993, 5(1): 34-44. doi: 10.1162/jocn.1993.5.1.34 [22] LOGOTHETIS N K. What we can do and what we cannot do with fMRI[J]. Nature, 2008, 453: 869-878. doi: 10.1038/nature06976 [23] DRESLER M, SHIRER W R, KONRAD B N, et al. Mnemonic training reshapes brain networks to support superior memory[J]. Neuron, 2017, 93: 1227-1235. doi: 10.1016/j.neuron.2017.02.003 [24] GENOVESE C R, LAZAR N A, NICHOLOS T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate[J]. Neuroimage, 2002, 15: 870-878. doi: 10.1006/nimg.2001.1037 [25] TAN L H, LIU H L, PERFETTI C A. et al. The neural system underlying Chinese logograph reading[J]. Neuroimage 13, 2001, 13(5): 836-846. doi: 10.1006/nimg.2001.0749 [26] WONG A C N, JOBARD G, JAMES K H, et al. Expertise with characters in alphabetic and nonalphabetic writing systems engage overlapping occipito-temporal areas[J]. Cognitive Neuropsychology, 2009, 26: 111-127. doi: 10.1080/02643290802340972 [27] LIU L, DENG X X, PENG D L, et al. Modality- and task-specific brain regions involved in Chinese lexical processing[J]. Journal of Cognitive Neuroscience, 2009, 21(8): 1473-1487. doi: 10.1162/jocn.2009.21141 [28] LEE K M. Functional MRI comparison between reading ideographic and phonographic scripts of one language[J]. Brain and Language, 2004, 91: 245-251. doi: 10.1016/j.bandl.2004.03.004 [29] BINDER J R, WESTBURY C F, MCKIERNAN K A, et al. Distinct brain systems for processing concrete and abstract concepts[J]. Journal of Cognitive Beuroscience, 2005, 17(6): 905-917. doi: 10.1162/0898929054021102 [30] PENG D L, DING G S, PERRY C, et al. fMRI evidence for the automatic phonological activation of briefly presented words[J]. Cognitive Brain Research, 2004, 20: 156-164. doi: 10.1016/j.cogbrainres.2004.02.006 [31] JACKSON R L, HOFFMAN P, POBRIC G, et al. The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions[J]. Journal of Neuroscience, 2016, 36: 1490-1501. doi: 10.1523/JNEUROSCI.2999-15.2016 [32] WAI T S, NIU Z, JIN Z, et al. A structural-functional basis for dyslexia in the cortex of Chinese readers[J]. Proceedings of National Academy of Sciences, 2008, 105(14): 5561-5566. doi: 10.1073/pnas.0801750105 [33] CAVALLI E, COLE P, BADIER J M, et al. Spatiotemporal dynamics of morphological processing in visual word recognition[J]. Journal of Cognitive Neuroscience, 2016, 28: 1228-1242. doi: 10.1162/jocn_a_00959 [34] SMITH S M, FOX P T, MILLER K L, et al. Correspondence of the brain’s functional architecture during activation and rest[J]. Proceedings of National Academy of Sciences, 2009, 106(31): 13040-13045. doi: 10.1073/pnas.0905267106 [35] DAMOISEAUX J S, GREICIUS M D. Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity[J]. Brain Structure and Function, 2009, 213: 525-533. doi: 10.1007/s00429-009-0208-6 [36] BUCKNER R L, KOUTSTAAL W, SCHACTER D L, et al. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming[J]. Brain, 2000, 123: 620-640. doi: 10.1093/brain/123.3.620 [37] BOOTH J R, BURMAN D D, MEYER J R, et al. Modality independence of word comprehension[J]. Human Brain Mapping, 2002, 16: 251-261. doi: 10.1002/hbm.10054 [38] BINDER J R, MCKIERNAN K A, PARSONS M E, et al. Neural correlates of lexical access during visual word recognition[J]. Journal of Cognitive Neuroscience, 2003, 15(3): 372-93. [39] ZHANG W J, XIANG M, WANG S P. The role of left angular gyrus in the representation of linguistic composition relations[J]. Human Brain Mapping, 2022, 43(7): 2204-2217. [40] VILGERG K L, RUGG M D. Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective[J]. Neuropsychologia, 2008, 46: 1787-1799. doi: 10.1016/j.neuropsychologia.2008.01.004 [41] NOPPENEY U, PRICE C J. Retrieval of abstract semantics[J]. Neuroimage, 2004, 22: 164-170. doi: 10.1016/j.neuroimage.2003.12.010 [42] POLDRACK R A, WAGNER A D, PRULL M W, et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex[J]. NeuroImage, 1999, 10: 15-35. doi: 10.1006/nimg.1999.0441 [43] SABSEVITZ D S, MEDLER D A, SEIDENBERG M, et al. Modulation of the semantic system by word imageability[J]. Neuroimage, 2005, 27: 188-200. doi: 10.1016/j.neuroimage.2005.04.012 [44] GALETZKA C. The story so far: How embodied cognition advances our understanding of meaning-making[J]. Frontiers in Psychology, 2017, 8: 1-5. [45] VILLANI C, LUGLI L, LIUZZA M T, et al. Sensorimotor and interoceptive dimensions in concrete and abstract concepts[J]. Journal of Memory and Language, 2021, 116: 1-12. [46] WELNIARZ Q, GALLEA Q, LAMY J C, et al. The supplementary motor area modulates interhemispheric interactions during movement preparation[J]. Human Brain Mapping, 2019, 40: 2125-2142. doi: 10.1002/hbm.24512 [47] PATRA A, KAUR H, CHAUDHARY P, et al. Morphology and morphometry of human paracentral lobule: An anatomical study with its application in neurosurgery[J]. Asian Journal of Neurosurgery, 2021, 16(2): 349-354. doi: 10.4103/ajns.AJNS_505_20 [48] HAHN B, ROSS T J, STEIN E A. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention[J]. Neuroimage, 2006, 32: 842-853. doi: 10.1016/j.neuroimage.2006.04.177 [49] YI H G, LEONARD M K, CHANG E F. The encoding of speech sounds in the superior temporal gyrus[J]. Neuron, 2019, 102: 1096-1110. doi: 10.1016/j.neuron.2019.04.023 [50] YESHURUN Y, NGUYEN M, HASSON U. The default mode network: Where the idiosyncratic self meets the shared social world[J]. Nature Reviews Neuroscience, 2021, 22: 181-192. doi: 10.1038/s41583-020-00420-w [51] SATPUTE A B, LINDQUIST K A. The default mode network’s role in discrete emotion[J]. Trends in Cognitive Sciences, 2019, 23: 851-864. doi: 10.1016/j.tics.2019.07.003 [52] WAGNER A D, SHANNON B J, KAHN I, et al. Parietal lobe contributions to episodic memory retrieval[J]. Trends in Cognitive Sciences, 2005, 9: 445-453. doi: 10.1016/j.tics.2005.07.001 [53] CAVANNA A E, TRIMBLE M R. The precuneus: A review of its functional anatomy and behavioral correlates[J]. Brain, 2006, 129: 564-583. doi: 10.1093/brain/awl004 [54] BORGHI A M. A future of words: Language and the challenge of abstract concepts[J]. Journal of Cognition, 2020, 3(1): 1-18. doi: 10.5334/joc.90 [55] CONNELL L, LYNOTT D. Strength of perceptual experience predicts word processing performance better than concreteness or imageability[J]. Cognition, 2012, 125: 452-465. doi: 10.1016/j.cognition.2012.07.010