-
以激光光频梳为代表的激光技术作为可靠的相干光源,已广泛应用于精密测量、超快光学等领域。然而它们通常依赖庞大、复杂且昂贵的设备来产生、控制和使用,因此大多数应用场景都受限于实验室。随着近二三十年来半导体材料和微纳加工技术的发展,片上集成光频梳等相干激光光源逐渐成为研究热点。集成相干光源具有体积小、功耗低、成本低、波段广、可重构等优势,在诸多新兴技术如自动驾驶[1]、光子计算[2]、机器学习[3]、5G/6G通信[4]、高速光互联[5-6]等领域极具潜力和价值。得益于近年来集成光子技术取得的重大进展,片上集成相干光源技术的可行性已在众多光学材料平台上得到验证,其主要性能指标,如谱宽[7]和噪声[8]等已经可以与现有固态激光器和光纤激光器等相媲美。
集成相干光源的光场被限制在尺寸较小的波导中,可显著提高光功率密度,降低泵浦阈值。使用微谐振腔(简称“微腔”)可以进一步提升非线性增益,微腔从时间和空间两个维度将光场限制在腔内传播,通过谐振作用大大增强了腔内光场功率,其增强系数与微腔的品质因子(即Q值)有关,Q值越高,增强效果越显著,泵浦阈值越低。早期的高Q微腔大多是基于回音壁模式(Whispering Gallery Mode, WGM)的微腔,例如微球腔(Micro-sphere)[9]、微楔盘腔(Micro-wedge)[10]、微螺环腔(Micro-toroid)[11, 12]、微棒腔(Micro-rod)[13]等,尽管这类微腔的Q值很高(可达108以上),但难以集成,且需要拉锥光纤或棱镜耦合,受环境扰动较大。随着半导体生长和刻蚀工艺的日渐成熟,低损耗的集成光波导得以实现,为高Q值平面波导微腔(Planar Micro-cavity)的制备奠定了基础。与传统的WGM腔相比,平面波导微腔的模式体积更小,集成度更高,且便于大规模制备。目前用于制备集成非线性相干光源的平面波导微腔Q值普遍在106以上,集成Si3N4微腔的Q值甚至高达108[8]。尽管平面波导微腔的Q值比传统WGM微腔的Q值略低,但得益于更小的模式体积,可显著降低非线性阈值功率。总的来说,微腔集成相干光源具有低泵浦阈值、小体积、高集成、批量低成本等诸多优势,是光集成芯片中最重要的光器件之一。
Advances in Microcavity-Integrated Coherent Light Source Research, Communication Applications and Their Future Perspectives
-
摘要: 凭借小体积、低功耗、可重构、低成本等优势,片上集成相干光源成为光计算、自动驾驶、高速光互联、5G/6G通信等领域极具潜力的光源方案。微腔集成相干光源结合片上集成和腔增强效应,显著增加了腔内光场功率,降低了泵浦阈值。该文介绍克尔光频梳、微腔受激拉曼激光、二阶非线性光梳和微腔增强电光梳四大类微腔集成相干光源的原理和研究进展,针对谱宽、噪声、效率、功率四大关键性能指标对逐一进行分析,介绍基于微腔集成相干光源在通信应用中的研究进展,并对其未来发展趋势进行展望。Abstract: With advantages such as small footprint, low power consumption, reconfigurability and low cost, chip-integrated coherent light sources have become a highly promising scheme, applied in optical computing, autonomous driving, high-speed optical interconnection, 5G/6G communications, etc. Combining on-chip integration and cavity enhancement effects, microcavity-based integrated coherent light sources significantly improve the intracavity light power as well as reducing the pump threshold. namely Kerr frequency combs, microcavity stimulated Raman lasers, quadratic combs and microcavity-enhanced electro-optical combs. Here we introduce in detail the principles and research progress of four major types of microcavity integrated coherent light sources: Kerr optical frequency combs, microcavity stimulated Raman lasers, second-order nonlinear optical combs and microcavity-enhanced electro-optical combs. Focusing on four key parameters, namely spectrum width, noise, efficiency and power are analysed respectively. The research progresses of microcavity-based integrated coherent light sources in communication applications are introduced. And their future development trends are prospected.
-
[1] RIEMENSBERGER J, LUKASHCHUK A, KARPOV M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170. doi: 10.1038/s41586-020-2239-3 [2] XU X Y, TAN M X, CORCORAN B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 2021, 589(7840): 44-51. doi: 10.1038/s41586-020-03063-0 [3] FELDMANN J, YOUNGBLOOD N, KARPOV M, et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 2021, 589(7840): 52-58. doi: 10.1038/s41586-020-03070-1 [4] WANG B C, MORGAN J S, SUN K Y, et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons[J]. Light, Science & Applications, 2021, 10(1): 4. [5] CORCORAN B, TAN M X, XU X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source[J]. Nature Communications, 2020, 11(1): 2568. doi: 10.1038/s41467-020-16265-x [6] MARIN-PALOMO P, KEMAL J N, KARPOV M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 2017, 546(7657): 274-279. doi: 10.1038/nature22387 [7] CARLSON D R, HICKSTEIN D D, LIND A, et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies[J]. Physical Review Applied, 2017, 8(1): 014027. doi: 10.1103/PhysRevApplied.8.014027 [8] JIN W, YANG Q F, CHANG L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 2021, 15: 346-353. doi: 10.1038/s41566-021-00761-7 [9] CAI M, PAINTER O, VAHALA K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system[J]. Physical Review Letters, 2000, 85(1): 74-77. doi: 10.1103/PhysRevLett.85.74 [10] LEE H, CHEN T, LI J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 2012, 6: 369-373. doi: 10.1038/nphoton.2012.109 [11] ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421: 925-928. doi: 10.1038/nature01371 [12] ILCHENKO V S, GORODETSKY M L, YAO X S, et al. Microtorus: A high-finesse microcavity with whispering-gallery modes[J]. Optics Letters, 2001, 26(5): 256-258. doi: 10.1364/OL.26.000256 [13] DEL’HAYE P, DIDDAMS S A, PAPP S B. Laser-machined ultra-high-Q microrod resonators for nonlinear optics[J]. Applied Physics Letters, 2013, 102(22): 221119. doi: 10.1063/1.4809781 [14] KIPPENBERG T J, SPILLANE S M, VAHALA K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 2004, 93(8): 083904. doi: 10.1103/PhysRevLett.93.083904 [15] DEL’HAYE P, SCHLIESSER A, ARCIZET O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217. doi: 10.1038/nature06401 [16] LI J, LEE H, CHEN T, et al. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs[J]. Physical Review Letters, 2012, 109(23): 233901. doi: 10.1103/PhysRevLett.109.233901 [17] DEL’HAYE P, BEHA K, PAPP S B, et al. Self-injection locking and phase-locked states in microresonator-based optical frequency combs[J]. Physical Review Letters, 2014, 112(4): 043905. doi: 10.1103/PhysRevLett.112.043905 [18] YU M J, OKAWACHI Y, GRIFFITH A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator[J]. Optica, 2016, 3(8): 854-860. doi: 10.1364/OPTICA.3.000854 [19] KIPPENBERG T J, GAETA A L, LIPSON M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. doi: 10.1126/science.aan8083 [20] HERR T, BRASCH V, JOST J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 2014, 8: 145-152. doi: 10.1038/nphoton.2013.343 [21] BRASCH V, GEISELMANN M, HERR T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 2016, 351(6271): 357-360. doi: 10.1126/science.aad4811 [22] PFEIFFER M H P, HERKOMMER C, LIU J Q, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators[J]. Optica, 2017, 4(7): 684. doi: 10.1364/OPTICA.4.000684 [23] XUE X X, XUAN Y, LIU Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 2015, 9: 594-600. doi: 10.1038/nphoton.2015.137 [24] YANG Q F, YI X, YANG K Y, et al. Stokes solitons in optical microcavities[J]. Nature Physics, 2017, 13: 53-57. doi: 10.1038/nphys3875 [25] COLE D C, LAMB E S, DEL’HAYE P, et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 2017, 11: 671-676. doi: 10.1038/s41566-017-0009-z [26] LU Z Z, CHEN H J, WANG W Q, et al. Synthesized soliton crystals[J]. Nature Communications, 2021, 12: 3179. doi: 10.1038/s41467-021-23172-2 [27] BAO H L, COOPER A, ROWLEY M, et al. Laser cavity-soliton microcombs[J]. Nature Photonics, 2019, 13: 384-389. doi: 10.1038/s41566-019-0379-5 [28] LIU J Q, LUCAS E, RAJA A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 2020, 14: 486-491. doi: 10.1038/s41566-020-0617-x [29] YI X, YANG Q F, YANG K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2015, 2(12): 1078-1085. doi: 10.1364/OPTICA.2.001078 [30] SUH M G, VAHALA K. Gigahertz-repetition-rate soliton microcombs[J]. Optica, 2018, 5(1): 65-66. doi: 10.1364/OPTICA.5.000065 [31] DIDDAMS S A, VAHALA K, UDEM T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676. doi: 10.1126/science.aay3676 [32] LUCAS E, BROCHARD P, BOUCHAND R, et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator[J]. Nature Communications, 2020, 11(1): 374. doi: 10.1038/s41467-019-14059-4 [33] WENG W L, LUCAS E, LIHACHEV G, et al. Spectral purification of microwave signals with disciplined dissipative kerr solitons[J]. Physical Review Letters, 2019, 122(1): 013902. doi: 10.1103/PhysRevLett.122.013902 [34] YAO L, LIU P, CHEN H J, et al. Soliton microwave oscillators using oversized billion Q optical microresonators[J]. Optica, 2022, 9(5): 561-564. doi: 10.1364/OPTICA.459130 [35] STONE J R, BRILES T C, DRAKE T E, et al. Thermal and nonlinear dissipative-soliton dynamics in kerr-microresonator frequency combs[J]. Physical Review Letters, 2018, 121(6): 063902. doi: 10.1103/PhysRevLett.121.063902 [36] CARMON T, YANG L, VAHALA K. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 2004, 12(20): 4742-4750. doi: 10.1364/OPEX.12.004742 [37] BRASCH V, GEISELMANN M, PFEIFFER M H P, et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state[J]. Optics Express, 2016, 24(25): 29312-29320. doi: 10.1364/OE.24.029312 [38] YI X, YANG Q F, YANG K Y, et al. Active capture and stabilization of temporal solitons in microresonators[J]. Optics Letters, 2016, 41(9): 2037-2040. doi: 10.1364/OL.41.002037 [39] JOSHI C, JANG J K, LUKE K, et al. Thermally controlled comb generation and soliton modelocking in microresonators[J]. Optics Letters, 2016, 41(11): 2565-2568. doi: 10.1364/OL.41.002565 [40] BRILES T C, YU S P, DRAKE T E, et al. Generating octave-bandwidth soliton frequency combs with compact low-power semiconductor lasers[J]. Physical Review Applied, 2020, 14(1): 014006. doi: 10.1103/PhysRevApplied.14.014006 [41] ZHANG S Y, SILVER J M, DEL BINO L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 2019, 6(2): 206-212. doi: 10.1364/OPTICA.6.000206 [42] ZHOU H, GENG Y, CUI W W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light, Science & Applications, 2019, 8: 50. [43] PAVLOV N G, KOPTYAEV S, LIHACHEV G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 2018, 12: 694-698. doi: 10.1038/s41566-018-0277-2 [44] SHEN B Q, CHANG L, LIU J Q, et al. Integrated turnkey soliton microcombs[J]. Nature, 2020, 582(7812): 365-369. doi: 10.1038/s41586-020-2358-x [45] XIANG C, LIU J Q, GUO J, et al. Laser soliton microcombs heterogeneously integrated on silicon[J]. Science, 2021, 373(6550): 99-103. doi: 10.1126/science.abh2076 [46] LIN H B, CAMPILLO A J. Microcavity enhanced Raman gain[J]. Optics Communications, 1997, 133(1/2/3/4/5/6): 287-292. [47] WU Y, YANG X, LEUNG P T. Theory of microcavity-enhanced Raman gain[J]. Optics Letters, 1999, 24(5): 345-347. doi: 10.1364/OL.24.000345 [48] SPILLANE S M, KIPPENBERG T J, VAHALA K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 2002, 415(6872): 621-623. doi: 10.1038/415621a [49] RONG H S, XU S B, KUO Y H, et al. Low-threshold continuous-wave Raman silicon laser[J]. Nature Photonics, 2007, 1: 232-237. doi: 10.1038/nphoton.2007.29 [50] LATAWIEK P, VENKATARAMAN V, BUREK M J, et al. On-chip diamond Raman laser[J]. Optica, 2015, 2(11): 924-928. doi: 10.1364/OPTICA.2.000924 [51] LIU X W, SUN C Z, XIONG B, et al. Integrated continuous-wave aluminum nitride Raman laser[J]. Optica, 2017, 4(8): 893-896. doi: 10.1364/OPTICA.4.000893 [52] YU M J, OKAWACHI Y, CHENG R, et al. Raman lasing and soliton mode-locking in lithium niobate microresonators[J]. Light, Science & Applications, 2020, 9: 9. [53] LU T, YANG L, CARMON T, et al. A narrow-linewidth on-chip toroid Raman laser[J]. IEEE Journal of Quantum Electronics, 2011, 47(3): 320-326. doi: 10.1109/JQE.2010.2087742 [54] LIU K W, YAO S Y, DING Y L, et al. Fundamental linewidth of an AlN microcavity Raman laser[J]. Optics Letters, 2022, 47(17): 4295-4298. doi: 10.1364/OL.466195 [55] WENG H Z, LIU J, AFRIDI A A, et al. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator[J]. Optics Letters, 2021, 46(3): 540-543. doi: 10.1364/OL.416460 [56] GRIFFITH A G, YU M J, OKAWACHI Y, et al. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects[J]. Optics Express, 2016, 24(12): 13044-13050. doi: 10.1364/OE.24.013044 [57] YAO S Y, BAO C Y, WANG P, et al. Generation of stable and breathing flat-top solitons via Raman assisted four wave mixing in microresonators[J]. Physical Review A, 2020, 101(2): 023833. doi: 10.1103/PhysRevA.101.023833 [58] DIDDAMS S A, MA L S, YE J, et al. Broadband optical frequency comb generation with a phase-modulated parametric oscillator[J]. Optics Letters, 1999, 24(23): 1747-1749. doi: 10.1364/OL.24.001747 [59] MOSCA S, PARISI M, RICCIARDI I, et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator[J]. Physical Review Letters, 2018, 121(9): 093903. doi: 10.1103/PhysRevLett.121.093903 [60] HANSSON T, PARRA-RIVAS P, BERNARD M, et al. Quadratic soliton combs in doubly resonant second-harmonic generation[J]. Optics Letters, 2018, 43(24): 6033-6036. doi: 10.1364/OL.43.006033 [61] VILLOIS A, KONDRATIEV N, BREUNIG I, et al. Frequency combs in a microring optical parametric oscillator[J]. Optics Letters, 2019, 44(18): 4443-4446. doi: 10.1364/OL.44.004443 [62] IKUTA R, ASANO M, TANI R, et al. Frequency comb generation in a quadratic nonlinear waveguide resonator[J]. Optics Express, 2018, 26(12): 15551-15558. doi: 10.1364/OE.26.015551 [63] HENDRY I, TRAINOR L S, XU Y Q, et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator[J]. Optics Letters, 2020, 45(5): 1204-1207. doi: 10.1364/OL.385751 [64] SZABADOS J, PUZYREV D N, MINET Y, et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators[J]. Physical Review Letters, 2020, 124(20): 203902. doi: 10.1103/PhysRevLett.124.203902 [65] BRUCH A W, LIU X W, GONG Z, et al. Pockels soliton microcomb[J]. Nature Photonics, 2021, 15(1): 21-27. doi: 10.1038/s41566-020-00704-8 [66] ROY A, NEHRA R, JAHANI S, et al. Temporal walk-off induced dissipative quadratic solitons[J]. Nature Photonics, 2022, 16: 162-168. doi: 10.1038/s41566-021-00942-4 [67] BAO C Y, YUAN Z Q, WANG H M, et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared[J]. Optica, 2020, 7(4): 309-315. doi: 10.1364/OPTICA.382992 [68] HE Y, YANG Q F, LING J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138-1144. doi: 10.1364/OPTICA.6.001138 [69] KOBAYASHI T, SUETA T, CHO Y, et al. High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator[J]. Applied Physics Letters, 1972, 21(8): 341-343. doi: 10.1063/1.1654403 [70] METCALF A J, TORRES-COMPANY V, LEAIRD D E, et al. High-power broadly tunable electrooptic frequency comb generator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 231-236. doi: 10.1109/JSTQE.2013.2268384 [71] ZHANG T, YIN K, ZHANG C X, et al. Integrated electro-optic frequency combs: Theory and current progress[J]. Laser & Photonics Reviews, 2024, 18(6): 2301363. [72] SOREF R, BENNETT B. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 1987, 23(1): 123-129. doi: 10.1109/JQE.1987.1073206 [73] DEMIRTZIOGLOU I, LACAVA C, BOTTRILL K R H, et al. Frequency comb generation in a silicon ring resonator modulator[J]. Optics Express, 2018, 26(2): 790-796. doi: 10.1364/OE.26.000790 [74] TOUGH E J, FICE M J, CARPINTERO G, et al. InP integrated optical frequency comb generator using an amplified recirculating loop[J]. Optics Express, 2022, 30(24): 43195-43208. doi: 10.1364/OE.469942 [75] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7 [76] HU Y W, YU M J, BUSCAINO B, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators[J]. Nature Photonics, 2022, 16: 679-685. doi: 10.1038/s41566-022-01059-y [77] YU M J, BARTON III D, CHENG R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 2022, 612(7939): 252-258. doi: 10.1038/s41586-022-05345-1 [78] OBRZUD E, LECOMTE S, HERR T. Temporal solitons in microresonators driven by optical pulses[J]. Nature Photonics, 2017, 11: 600-607. doi: 10.1038/nphoton.2017.140 [79] ZHUANG R J, NI K, WU G H, et al. Electro-optic frequency combs: Theory, characteristics, and applications[J]. Laser & Photonics Reviews, 2023, 17(6): 2200353. [80] YANG Q F, JI Q X, WU L, et al. Dispersive-wave induced noise limits in miniature soliton microwave sources[J]. Nature Communications, 2021, 12(1): 1442. doi: 10.1038/s41467-021-21658-7 [81] HELGASON Ó B, GIRARDI M, YE Z C, et al. Surpassing the nonlinear conversion efficiency of soliton microcombs[J]. Nature Photonics, 2023, 17(11): 992-999. doi: 10.1038/s41566-023-01280-3 [82] XUE X X, ZHENG X P, ZHOU B K. Super-efficient temporal solitons in mutually coupled optical cavities[J]. Nature Photonics, 2019, 13: 616-622. doi: 10.1038/s41566-019-0436-0 [83] SHU H W, CHANG L, TAO Y S, et al. Microcomb-driven silicon photonic systems[J]. Nature, 2022, 605(7910): 457-463. doi: 10.1038/s41586-022-04579-3 [84] CHANG L, XIE W Q, SHU H W, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 2020, 11(1): 1331. doi: 10.1038/s41467-020-15005-5 [85] LIU Y, QIU Z R, JI X R, et al. A photonic integrated circuit-based erbium-doped amplifier[J]. Science, 2022, 376(6599): 1309-1313. doi: 10.1126/science.abo2631 [86] FÜLÖP A, MAZUR M, LORENCES-RIESGO A, et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators[J]. Nature Communications, 2018, 9(1): 1598. doi: 10.1038/s41467-018-04046-6 [87] XUE X X, GRELU P, YANG B F, et al. Dispersion-less Kerr solitons in spectrally confined optical cavities[J]. Light, Science & Applications, 2023, 12(1): 19. [88] LUCAS E, YU S P, BRILES T C, et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators[J]. Nature Photonics, 2023, 17: 943-950. doi: 10.1038/s41566-023-01252-7 [89] 肖滟兰, 杨艳平, 杨郑宇潇, 等. 片上集成克尔光频梳的波分复用光纤通信技术综述(特邀)[J]. 红外与激光工程, 2022, 51(5): 20220291. doi: 10.3788/IRLA20220291 XIAO Y L, YANG Y P, YANG Z, et al. Chip-scale Kerr optical frequency comb for wavelength-division multiplexing optical fiber communications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220291. doi: 10.3788/IRLA20220291 [90] PFEIFLE J, BRASCH V, LAUERMANN M, et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 2014, 8(5): 375-380. doi: 10.1038/nphoton.2014.57 [91] MAZUR M, SUH M G, FÜLÖP A, et al. High spectral efficiency coherent superchannel transmission with soliton microcombs[J]. Journal of Lightwave Technology, 2021, 39(13): 4367-4373. doi: 10.1109/JLT.2021.3073567 [92] JØRGENSEN A A, KONG D, HENRIKSEN M R, et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source[J]. Nature Photonics, 2022, 16: 798-802. doi: 10.1038/s41566-022-01082-z [93] OBRZUD E, RAINER M, HARUTYUNYAN A, et al. A microphotonic astrocomb[J]. Nature Photonics, 2019, 13: 31-35. doi: 10.1038/s41566-018-0309-y