-
锂离子电池(Lithium-ion Batteries, LiBs)已经被广泛应用于电动汽车、便携设备、家用电器等场景[1]。作为核心动力源,其性能直接关系到这些设备系统的性能和使用安全。为确保锂电池的安全使用,需要对锂电池的状态进行精确的估计,包括荷电状态(State of Charge, SOC)、健康状态(State of Health, SOH)以及剩余寿命(Remaining Useful Life, RUL)等。国内外学者针对这几类主要的应用场景提出了多种算法。这些算法可以粗略分为两类:基于模型的方法和数据驱动的方法。
基于模型的算法包括基于电化学的模型以及基于等效电路的模型,这些算法针对电池的物化特征和性质演化方程建立复杂模型进行状态估计,引入了较高的算法复杂度和较强专业性,往往需要维护人员具备深厚的电池原理背景知识。数据驱动的算法主要包括传统机器学习算法以及深度学习模型算法。这两类算法不需要对电路模型进行建模,仅依赖大量数据用于模型训练,通过深度模型强大的非线性建模能力从海量数据中学到电池特征(如电压、电流、内阻等)和需要预测的电池状态之间的映射关系。基于迅速发展的深度学习算法和足量的数据支撑,数据驱动的方法能取得较基于模型的方法更高的估计精度和更强的泛化能力。因此,数据驱动的方法逐渐成为研究主流,而在数据驱动方法中,以深度学习为代表的一系列方法取得了最好的效果。
然而,数据驱动方法的有效性依赖于数据独立同分布[2]的假设,即深度模型的训练数据和测试数据必须服从相同的分布,否则模型的性能会大幅下降,而这种假设在实际应用中是很难满足的。以电动汽车上的锂电池状态估计算法为例,当汽车运行于不同地区时,电池运行的物理环境(温度、湿度等)会发生显著的变化,从而直接影响电池的性质。然而由电池厂商预先准备的算法无法在训练时预知汽车所有可能的运行环境,这就导致训练数据(电池厂商掌握的实验室数据)和测试数据(汽车实际运行时面临的任意数据)的分布存在偏差,从而打破独立同分布假设,导致算法在实际应用中的估计精度降低。这种训练数据(源域)和测试数据(目标域)之间存在的偏差又被称为领域偏差,试图克服领域偏差保证模型性能的状态估计任务也被称为锂电池状态的跨域估计。
为了实现锂电池状态跨域估计,迁移学习[3](transfer learning, TL)算法被引入。迁移学习能将某领域中的预训练知识以较小的代价迁移至另一个相关但不同的领域,通过跨领域的知识共享和复用提升算法的适用范围,且无需在目标领域上重新训练模型,从而降低数据采集和模型训练成本。作为一个新兴研究方向,基于迁移学习的锂电池状态跨域估计方法种类繁多、采用的技术层次复杂多样,对应的应用场景和效果也有所不同。但此方向发展时间较短,尚未形成一套成熟的划分框架和衡量标准。
国内外已有许多关于基于数据驱动的锂电池状态估计算法研究。文献[4]基于数据驱动对RUL估计方法进行了综述。文献[5]介绍了SOH估计方法的定义、电池老化机理,并对基于模型以及数据驱动方法的优缺点作了简单对比。文献[6-8]针对锂电池SOC估计方法展开讨论。文献[9]同时覆盖了SOC和SOH估计问题,并进行了初步的对比和总结。本文对锂电池SOC、SOH以及RUL估计场景下的迁移学习算法[10]进行归纳总结,将相关算法分为以下3类:
1)基于微调的锂电池状态跨域估计。微调方法是目前使用最广泛、操作最简单的迁移学习方法,仅利用有标签的目标域数据对源域模型进行重新训练即可。迁移过程中,可以选择对网络模型所有参数进行微调,也可以固定某层参数对其他参数进行微调。但微调方法的缺点也十分明显,即依赖于有标签的目标域数据,且开销较大,往往需要对所有模型参数计算梯度、更新。
2)基于度量的锂电池状态跨域估计。针对不同领域之间的分布偏差,一些工作提出了显式的度量用于衡量偏差大小,并致力于缩小源域和目标域之间的差异度量以减轻数据分布偏差。模型训练迭代过程中的主要优化目标就是让不同领域所提取高维特征之间的度量距离最小化。基于度量的方法不要求目标域数据有标签,直观性、可解释性较好,但不同的度量在不同的数据分布情况下可能有不一致的表现,其效果难以预计和量化。
3)基于对抗训练的锂电池状态跨域估计。对抗训练方法的目的同样是缩小源域和目标域之间的分布差异,但不同于显式地优化减小分布度量,此类方法通过对抗学习隐式地对齐不同领域之间的分布。方法借鉴了生成对抗网络(Generative Adversarial Networks, GAN)的思想,设计了一个领域判别器与特征提取器进行对抗,在判别器和提取器达到动态平衡时即认为目标域模型学到了“域不变”的特征表示。这种方法无需针对不同的问题设计显式的度量,但对抗训练过程稳定性较差,训练难度较高。
-
在迁移学习中,可以使用数据
$ X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} $ 及数据的边缘分布$ P(X) $ 来确定一个领域$ D=\{X, P(X)\} $ 。以电池充放电数据为例,数据X即为所有的电池充放电过程记录,而数据分布$ P(X) $ 可能因为电池不同品牌、不同工况(如温度不同等)充放电有所不同。任务$ T = Y, f(\cdot) $ 由标签空间$ Y=\left\{y_{1}, y_{2} \cdots, y_{n}\right\} $ 和功能函数$ f(\cdot) $ 构成。如对于电池状态预测任务,标签空间中的每个标签个体$ y_{i} $ 为对应某只电池充放电数据$x_i $ 的状态标签,$ f(\cdot) $ 为预测模块,期望其具有功能$ y_{i}=f\left(x_{i}\right) $ 。可以进一步定义源域$ D_{s}= \left\{X_{s}, P_{s}\left(X_{s}\right)\right\} $ ,目标域$ D_{t}=\left\{X_{t},P_{t}(X_t)\right\} $ ,源任务$ T_{s}= \left\{Y_{s}, f_{s(\cdot)}\right\} $ 和目标任务$ T_{t} =\left\{ Y_{t} f_t(\cdot)\right\} $ 。在某个特定问题中,假设一个源域$ D_s $ 和对应的源任务$ T_{s} $ ,以及一个与源域相关但不同的目标域$D_t $ 和目标任务$ T_t $ ,迁移学习的目的是利用源域中的知识尽可能地改善目标任务上功能函数$ f_{t} $ 的性能。在实际应用场景中,源域上往往有较丰富、质量较高的训练数据,而目标域的有标注数据较少或质量较低。根据领域的定义,源域和目标域的不同可以理解为数据不同$X_s \ne X_t $ ,或数据分布不同$ P_{s}\left(X_{s}\right) \ne P_{t}\left(X_{t}\right) $ 。如源域包含充足的实验室场景下品牌A电池常温充放电数据,目标域为高速驾驶场景下品牌B电池高温充放电数据。这两个领域相关(均为电池充放电)但不同(品牌、工况等不同),需要采用迁移学习实现实验室模型向现实驾驶模型的迁移。 -
锂电池状态估计是电池管理系统(battery management system, BMS)的核心功能之一,对于管理电池健康、提升电池效率起到关键作用。锂电池状态又可细分为荷电状态SOC、健康状态SOH、剩余寿命RUL,其简要介绍如表1所示。上述锂电池状态并不能通过对当前电池参数进行直接测量得到,只能利用其他相关参数(如电流、电压、工作温度、内阻等)来进行间接估计。
表 1 本文讨论的锂电池状态
状态名称 含义 作用 SOC 电池当前剩余容量与当前
最大容量的比值反映电池当前实际电量 SOH 电池当前实际容量与标称
额定容量的比值反应电池当前最大容量 RUL 锂电池最大可用容量衰退至
某失效阈值(如80%)所剩余的
循环次数或充放电周期反应电池剩余可用的
循环次数 -
锂电池SOC又被称为电池剩余电量,可以用来反映电池当前电量,定义如下:
$$ {{\mathrm{SOC}}}=\frac{Q}{Q_{\max }} $$ (1) 式中,
$ { {\mathrm{SOC}} } $ 表示所需估计的荷电状态值;$ Q $ 表示电池当前剩余电荷量;$Q_{\max} $ 表示电池当前最大电荷量。SOC代表电池剩余电量与电池当前最大容量的比值。当电池充满电时,SOC值为1。 -
锂电池SOH反应电池目前的最大容量状况,可利用电池容量定义如下:
$$ {{\mathrm{SOH}}}=\frac{{Q}_{{\max}}}{{Q}_{\text{nominal}}} $$ (2) 式中,
$Q_{\max} $ 表示电池当前最大容量;$ Q_{{\mathrm{nominal}}} $ 表示电池额定容量。使一个充满电的电池按固定倍率放电直至电池输出电压降到截止电压,电池所放出的总电荷量就是该电池目前可使用的最大容量值。由式(1)和式(2)可推导SOC与SOH的关系:$$ {{\mathrm{SOC}}}=\frac{Q}{{{\mathrm{SOH}}} \times Q_{\text{nominal}}} $$ (3) -
锂电池RUL是指锂电池的最大可用容量衰退到某一规定的失效阈值所经历的过程长度(常用循环次数或充放电周期衡量)。根据常用标准,当锂电池的实际容量衰减到额定容量的80%时即认为其寿命终止[11]。从当前时刻到电池寿命终止所要经历的循环次数即为锂电池RUL。在RUL 估计中常利用锂电池的历史退化信息来构建电池的退化模型,通过历史数据来推演未来的退化数据,从而最终得出锂电池的剩余使用寿命。
-
锂电池状态估计问题本质上是一个回归问题,需要预测出一个连续值并计算其与真实值的差距。因此常用的评价指标有3类:平均绝对误差(Mean Absolute Error, MAE),均方误差(Mean Square Error, MSE)和均方根误差(Root Mean Square Error, RMSE)。其中MAE的定义为:
$$ {\mathrm{MAE}}=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\hat y_{i}\right| $$ (4) 式中,
$n $ 为测试样本个数;$ y_{i} $ 为第$i $ 个样本的真实值;$ \hat y_{i} $ 为第$i $ 个样本的预测值。MSE定义为:$$ {\mathrm{MSE}}=\frac{1}{n} \sum_{t=1}^{n}\left(y_{i}-\hat{y}_i\right)^{2} $$ (5) RMSE定义为:
$$ { {\mathrm{RMSE}} }=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat y_{i}\right)^{2}} $$ (6) 这3种指标均用于衡量预测值和真实值的偏差大小,没有特别显著的区别,其中MAE和RMSE在锂电池状态估计中最为常用。
-
NASA锂电池数据集[12]:属于三元锂电池,由美国国家航天航空局提供。一般采用B0005,B0006,B0007,B0018四个电池组,每个电池组包含不同电池的多个充放电循环数据,可以认为是不同的领域。
CALCE锂电池数据集[13]:属于钴酸锂电池,由马里兰大学提供。一般采用CS2_35,CS2_36,CS2_37,CS2_38四个电池组,可认为是不同领域。
Panasonic 18650PF锂电池数据集[14]:由威斯康星大学麦迪逊分校提供,包含25℃、10℃、0℃、−10℃、−20℃以及4种不同驾驶条件US06,HWFET,UDDS,LA92下的循环数据,包含电压、电流、温度等。
-
现有数据驱动的方法多以深度学习为主。基于深度学习的锂电池状态估计流程如图1所示,包括输入处理(数据采集、清洗、归一化、数据集划分等)、模型训练、输出处理(测试、推理、验证等)3大阶段。本文主要介绍锂电池状态估计中常用的3种深度学习模型:多层感知机[15](Multi-Layer Perceptron, MLP)、卷积神经网络[16](Convolutional Neural Network, CNN)以及循环神经网络[17](Recurrent Neural Network, RNN)。
-
MLP能够捕捉和学习输入数据之间的复杂关系和模式,处理高维数据并将其映射到更低维度的空间,从而为最终的估计任务提供精炼的特征表示,常被用于分类和回归问题中。锂电池状态估计中常用的MLP由输入层、隐藏层和输出层组成。隐藏层由一个或多个节点组成,每个节点称为一个神经元。每个神经元由层与层之间连接神经元之间的权重、偏置激活函数等部分组成。在实际应用中,MLP通常不作为独立的模型来执行锂电池状态估计任务,而是被集成在更为复杂的模型架构中,常用于模型的输出层将高维特征映射至输出空间。
-
典型的CNN架构中有主要有3种类型的网络层:卷积层[18]、池化层[19]和全连接层[20]。经典的卷积网络包含大量层数,如VGG[21]有19层,GoogleNet[22]有22层,ResNet[23]有50层。在锂电池状态估计中,只需要较少卷积和全连接层即可对电池机理进行较好的建模。在锂电池状态估计中, CNN通常作为其他RNN结构的辅助结构。如文献[24]同时采用了CNN和长短期记忆[25](Long Short-Term Memory, LSTM)网络以同时处理输入数据中的时空信息。文献[26]选取了充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络和双向长短期记忆网络[27](Bi-Directional Long Short-Term Memory, Bi-LSTM),提出基于CNN-BiLSTM的锂离子电池SOH在线估算方法。该方法通过CNN自动提取输入网格数据的空间特征,输入数据获取方便,无须储存大量数据,继而利用Bi-LSTM充分挖掘电池老化过程中的时序特征,最终实现精确SOH估算,MAE与RMSE分别低于1.07%和1.32%。文献[28]针对锂离子电池难以在线测量直接健康因子(容量、内阻)进行RUL估计的现状,提出基于并行CNN-自注意力机制与LSTM组合的锂电池RUL间接估计方法。
-
循环神经网络(RNN)是一种处理序列数据的人工神经网络,广泛用于时间序列相关问题。传统的深度神经网络假设输入和输出是相互独立的,而RNN的输出则受到序列中先前元素的影响,能提取序列中的前后依赖关系。在锂电池状态估计中最常用的RNN结构有3种:LSTM[25]、GRU[29]和双向RNN[30](Bidirectional RNN, BiRNN)。
长短期记忆网络:在传统的RNN架构中,比较靠后的更新梯度信息经过多层传播后变得难以辨识,从而使得长序列数据的模型学习变得十分困难。为了解决这种梯度消失[31]的问题,文献[25]提出了LSTM架构。LSTM单元由一个输入门、输出门、遗忘门和“细胞”结构组成,用于选择性地“记住”时序问题中较重要的成分,“忘记”无关紧要的信息,从而最大程度地保证关键信息的传递。这3个门控制着信息进出细胞的流动,
$ {x}_{t} $ (时刻$ t $ 的输入)的前向传播过程可以表示为:$$ f_{t}={\text{σ}}_{s}\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right) $$ (7) $$ i_{t}={\text{σ}}_{s}\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right) $$ (8) $$ o_{t}={\text{σ}}_{s}\left(W_{o} x_{t}+U_{o} h_{t-1}+b_{o}\right) $$ (9) $$ \tilde{c}_{t}={\text{σ}}_{h}\left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right) $$ (10) $$ c_{t}=f_t \odot c_{t-1}+i_{t} \odot \tilde{c}_{t} $$ (11) $$ h_{t}=o_{t} \odot {\text{σ}}_{h}\left(c_{t}\right) $$ (12) 式中,
$ f_t,{{i}_t}, o_t, \tilde c_{t} $ 分别表示时刻t的遗忘门状态、输入门状态、输出门状态和细胞输入;$ c_t $ 和$h_t $ 分别表示时刻t的细胞状态和隐藏状态;W和U表示权重矩阵;b表示偏置参数;${\text{σ}}_s $ 和$ {\text{σ}}_{h} $ 分别表示sigmoid激活函数和双曲正切激活函数。LSTM在数据驱动的锂电池状态估计问题中得到了广泛使用。文献[32]提出了一种基于LSTM的统一框架,用于SOC和RUL的联合估计,RMSE小于1.3%。文献[33]提出了一种基于LSTM的模型来对复杂电池行为进行建模,并利用电压、电流和温度等参数估计电池状态。文献[34]以不同维度的特征作为模型输入,将LSTM网络与不同的时序网络进行对比,并基于遗传算法优化了LSTM网络的相关参数,估计结果较好。门控循环单元:类似于LSTM,GRU[29]中包含一个重置门和更新门,用于控制保留哪些信息。GRU中
$x_t $ (时刻$ t $ 的输入)的前向传播过程可以表示如下:$$ z_{t}=\sigma \left(W_{z} x_{t}+U_{z} h_{t-1}\right) $$ (13) $$ r_{t}=\sigma \left(W_{r} x_{t}=U_r h_{t-1}\right) $$ (14) $$ \tilde h_{t}={\mathrm{tanh}} \left(W_{h} x_{t}+U_{h}\left(r_{t} \odot h_{t-1}\right)\right) $$ (15) $$ h_{t}=\left(1-z_{t}\right) \odot h_{t-1}+z_{t} \odot \tilde h_{t} $$ (16) 式中,
$ z_{t}, r_{t} ,\tilde{h}_{t}, h_{t} $ 分别表示更新门状态、重置门状态、候选隐藏层状态和隐藏层状态。与LSTM相比,GRU具有更少的组件和参数,计算量更小、执行更快。文献[35]利用基于GRU的动量梯度方法来进行SOC估计,并引入动量项,从而利用动量梯度算法[36]来进行模型权重优化。双向循环神经网络:BiRNN[30]用于增加可用的输入信息量,它将两个方向相反的隐藏层连接到同一输出层,使其可以同时获取来自未来和过去状态的信息。其它双向网络如BiLSTM[37]和BiGRU[38]也被用于锂电池状态估计。文献[39]采用贝叶斯优化算法[40]来优化BiLSTM网络的参数,取得了较朴素LSTM更低的误差。文献[41]利用LSTM对非线性数据的高效估计能力构建了一种BiLSTM估计模型,将电容、电压、电流作为输入数据,建立电容、电压和电流之间的联系,再输入未经训练的测试集数据进行估计,实现了SOH的快速估计,MAE仅为1.6%。文献[42]通过BiLSTM神经网络模型分析锂电池数据,建立电池容量、SOH和RUL之间的联系。
尽管上述的深度学习模型在锂电池状态估计上取得了巨大进步,但由于数据分布差异巨大和数据不足限制了它们的应用和推广。因此,要解决跨域锂电池状态估计问题,还需要将上述深度学习模型与迁移学习相关理论相结合。
-
典型的迁移学习流程如图2所示,主要包含两个阶段:预训练阶段和迁移阶段。这两个阶段通常涉及两个结构相同的深度学习模型,分别称为源域模型和目标域模型。在预训练阶段,源域模型使用充足的有标签源域数据进行训练直至收敛,其流程与图1相同。在迁移阶段,首先将源域模型的权重复制到目标域模型作为初始值,然后在目标域数据上对参数进行调整。对于某些资源受限、数据匮乏的应用场景,目标域数据只包含少量无标签的数据。微调[43]是迁移学习策略中最简单的一种,也是实际应用中最常用的一种,其基本技术框架如图3所示,模型首先在源域中进行预训练,然后在有标注的目标域和源域数据中进行重新训练以适配目标域的数据分布。微调方法中预训练阶段和迁移阶段的训练过程和原理是相同的,但在源域上训练时,模型需要学习大量领域基础知识;在目标域上仅需要轻度的微调,而大部分预训练知识得以保留。
部分基于微调的锂电池状态估计方法总结如表2所示,其中SOC、SOH、RUL栏代表该文献所涉及的应用场景,基础模型一栏代表该文献采用的深度模型基本结构。
文献[44]中采用了最经典的预训练−微调架构用于锂电池状态跨域估计。该文献采用MLP作为骨干网络在源域的电池类型上进行预训练,然后在目标域电池上进行微调,以实现跨越电池状态的预测。但该方法对MLP的所有部分进行了微调,这在一些规模较大的神经网络中是不适用的。为了实现更高效的微调,文献[45,46]仅对预训练模型的某个层进行微调,在保留大部分源知识的同时实现目标域知识的适应,适用于更大更复杂的网络。锂电池的健康状态和荷电状态估计类似,如文献[47]结合了LSTM和MLP作为基础模型,并采用部分目标数据集作为预训练−微调过程的训练数据。文献[48]针对不同工况的电池单体无法预测的情况,提出了一种基于迁移学习的LSTM模型,使得模型可预测其他工况下的RUL,增大了模型的适用范围,同时降低了模型的设计成本。
表 2 基于微调的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 概述 数据集与实验结果 基础模型 文献[44] ● 首次将迁移学习应用于锂电池状态估计 在4个电池组上进行实验,采用迁移学习技术后RMSE分别降低了4%,15%,27%,47% LSTM
MLP文献[45] ● 仅对预训练模型的一个层应用微调实现跨健康状况的状态估计 在两个健康状态不同的电池数据集LFP20和LFP27上进行实验,RMSE分别为3.14%和2.31% CNN
LSTM
MLP文献[49] ● 只利用CNN来进行SOC估计 在Panasonic 18650PF中不同工况下采集的子数据集进行跨领域测试,平均测试误差MAE=0.67% CNN 文献[50] ● 提出一种基于多特征融合的电池SOH预测模型 在12块18650锂电池上进行实验,基于不同的基础模型,采用迁移学习后取得了超过50%误差降低 CNN
LSTM文献[51] ● 通过电压分布的增量容量分析来定量表征电池的老化状态 在NASA锂电池数据集上进行实验,跨域测试误差RMSE分别为1.83%,4.96%,1.85%,1.68% LSTM 文献[52] ● ● 提出一个低计算量框架实现电池组串联电池的SOC和SOH估计 在18块SONY US18650VTC5电池上的平均SOC、SOH预测误差分别不大于2.5%和1.25% MLP 文献[53] ● 首先实现电池的退化数据增强,再结合VAE和LSTM进行预测 在CALCE数据集上进行跨域迁移的 RMSE不超过2%;NASA数据集上的RMSE不超过4% LSTM 微调方法因其简便性和有效性而广受青睐,然而其缺点在于对目标域有标记数据的强烈依赖。如文献[44]中使用了超过一半的目标域数据进行训练,这在现实应用中是难以做到的——实际应用场景的数据往往是未知或无标注的。另外,预训练−微调过程涉及较大的计算开销,在某些资源受限的场景可能不适用。为了实现更高效的计算,文献[52]提出了一个计算复杂度较低的领导者−跟随者框架,采用单一框架同时实现锂电池荷电和健康状态估计。剩余寿命预测问题略有不同,其底层的科学问题更偏重于序列预测。因此文献[53]首先引入了擅长生成序列数据的变分自编码器进行数据增强和扩充作为数据源域,然后采用降噪自编码器和LSTM作为骨干网络在真实数据(目标域)上进行迁移。该方法创新性地提出从人造数据到真实数据的迁移,克服了部分场景下有标签训练数据短缺的问题。另外,剩余寿命预测问题也广泛存在于各式各样的机械系统部件中,包括发动机、轴承等。虽然应用场景不同,但采用的方法往往具有相似性,可以相互借鉴。
-
尽管基于微调的跨域迁移技术实现简单、效果较好,但其对于数据的质量要求较高,一般要求足量的目标域有标注数据,而实际情况中目标域往往是未知的,或是无法标注的。仍以电动汽车为例,汽车实际运行的场景工况即为模型需要迁移的目标域,而这些场景是无法提前知晓、提前标注的,模型仅能依靠采集系统实时获取的无标签数据实现迁移,这是基于微调的技术难以做到的。为此学者提出了基于度量的迁移技术,以无监督自适应的方式实现迁移。具体而言,分布度量能将源域和目标域的数据偏差量化,迁移学习中认为在优化过程中将度量最小化则完成了源域和目标域数据的分布对齐,从而使源域上的模型在目标域上也有较好的性能。整个训练过程只需要对两个领域的数据进行特征提取,并通过最小化分布度量的方式减小分布差异,而无需进行目标域上的有监督训练过程。
这类方法常用的分布度量多种多样,包括最大均值差异(Maximum Mean Discrepancy, MMD)[54]、多核MMD(Multi-Kernel MMD, MK-MMD)[55]和最大密度差异(Maximum Density Divergence, MDD)[56]等。本文以MMD为例介绍这类度量的定义形式。MMD是一种广泛使用的无监督特征对齐度量,代表在再生核希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS)[57]的单位球内源域和目标域数据之间的平均差异。其定义式为:
$$\begin{split} &{{\mathrm{MMD}}}( {{x^S},{x^T}} ) = {\left\| {\frac{1}{{{N^S}}}\sum\limits_{i = 1}^{{N^S}} \phi ( {{x^S}} ) - \frac{1}{{{N^T}}}\sum\limits_{i = 1}^{{N^T}} \phi ( {{x^T}} )} \right\|_{{ {\mathscr{H}}^2}}} =\\ &\qquad\quad K( {{x^S},{x^S}} ) + 2K( {{x^S},{x^T}} ) + K( {{x^T},{x^T}} ) \end{split}$$ (17) 式中,
$ x^{S}, x^{T} $ 代表来自源域和目标域的样本;$ N^{S}, N^{T} $ 是这些样本的数量;$ \|\cdot\| _{{\mathscr{H}}^{2} }$ 表示在RKHS中的二范数操作;$\phi $ 是在RKHS中的映射函数;$K $ 表示函数$ K(A, B)=\dfrac{1}{N^{A} N^{B}} \displaystyle\sum_{i=1}^{N^A} \displaystyle\sum_{j=1}^{N^{B}} k(A, B) $ ,其中$k $ 表示核函数,通常采用高斯核函数。图4展示了基于度量方法的通用框架。为了方便叙述,本文不失一般性地将目标域模型抽象为特征提取器和预测器。特征提取器即模型的骨干网络,一般包含了超过99%的参数,用于将原始的输入数据变换到特征空间,得到高维特征。预测器一般由线性全连接层构成,用于将高维特征向量重新映射为所需的预测结果。基于度量的方法主要在高维特征上进行特征对齐。如图4所示,未经迁移的特征提取器面对不同领域的输入时产生的高维特征也有显著的分布差异,体现为高维空间中的聚簇结构。采用的度量应当可以计算出两个聚簇之间的分布差异,体现为度量的距离值。训练时,该距离会连同原本的优化目标(训练误差)一起进行优化。当训练收敛时,即认为在该度量下两个领域的高维特征已经不存在分布差异。一般来说,优化距离参数时仅需要特征提取器参与训练。
基于度量的方法较为直观,可解释性好,且仅需要无监督表征信息即可开展,因而适合用于实时模型更新、无监督迁移等现实应用场景。表3汇总了基于度量的部分锂电池状态跨域估计方法。文献[58]提出一种多尺度自适应方法,在深度神经网络的不同层之间都增加度量约束,以在网络的不同部分、不同处理阶段同时实现分布差异最小化。文献[59]受多尺度自适应的启发,设计了一种混合自适应框架,提出在全连接层之间采用MMD度量进行分布对齐、在LSTM层之间采用微调进行迁移。文献[60]采用了类似的混合自适应方法,但不同于上述的微调−度量混合,采用的是对抗−度量混合迁移。其基于对抗自适应的部分在后文还会进行介绍。文献[61]发现电池组中单体的不一致性和退化过程中的随机性会导致分布差异问题,并提出了一种辅助域适应的新型深度学习框架。该方法能够在仅使用目标电池少量循环数据的情况下,为差异性较大的电池建立通用的SOH估计模型。文献[62]使用CNN为骨干网络,从电池的充电电压序列中提取特征,同时将适用于分类任务的MMD度量进行改进以适用于回归任务,用于预测电池的健康状态。上述方法中基于单一度量的迁移学习方法对模型的提升效果往往有限,为了进一步提升迁移效果,文献[63]提出了域不变的深度残差LSTM(Deep Residual LSTM with Domain-Invariance, DIDRLSTM)。该方法利用DRLSTM作为特征提取器从源域和目标域学习高级特征,并添加了多核MMD将特征映射到 RKHS来减少域间的分布差异。
表 3 基于度量的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 采用度量 概述 数据集与实验结果 基础模型 DTNN[58] ● MMD 在模型多个层之间施加约束项以最小化
跨域特征分布差异在Panasonic 18650PF,A123和INR数据集上进行迁移,平均RMSE为1.09% CNN
MLPCDTL[59] ● MMD 通过可控MDA在源域电池和目标域电池之间进行知识共享 基于文献[64]的数据集进行实验,不同迁移设定下的最大误差不超过7% LSTM
MLPDDAN[60] ● MMD 根据目标域数据标签的可用性,可用于
监督或无监督场景采用Panasonic 18650共4组电池作为不同迁移领域,平均迁移误差1.8% MLP 文献[61] ● MMD 将域适应层集成到 LSTM 中实现跨域
退化特征对齐以NASA数据集为源域,文献[65]的数据集为目标域进行迁移,平均RMSE为2.35% LSTM 文献[62] ● MMD 采用MMD和CNN来减少训练和测试
电池数据之间的分布差异引入一组基于18650PF的新数据集,以及文献[64]的数据集,平均RMSE为0.681% CNN
MLPDDAN[66] ● MMD
CORAL同时利用MMD和CORAL作为特征距
离度量采用NASA数据集,基于不同条件的迁移组平均RMSE为7.86% BiGRU 文献[63] ● MK-MMD 引入残差连接和MK-MMD约束将特征映射到RHKS来减少域差异 采用CMAPSS数据集[67]进行RUL预测,共12组不同的迁移设定集 LSTM -
基于度量的方法在目标域数据资源有限的情况下也能实现有效的模型迁移,但这类方法的有效性取决于所采用度量与问题的适配程度,而并没有一种度量能在所有任务上都行之有效。为每种情况设计新的度量是费时费力的。因此出现了另一类基于对抗训练的迁移方法,其最大的特点在于源域和目标域之间的度量是隐式的,由生成器和判别器之间的不一致性描述。只需要让生成器和判别器趋于一致即可认为两个域之间的度量被最小化了,从而绕开了设计显式度量的困难。
基于对抗训练[68]的锂电池状态估计算法如图5所示,与基于度量的方法类似,基于对抗训练方法的模型可以被分为特征提取器和预测器。不同的是,基于对抗训练的方法额外引入了一种名为域判别器的新模块。判别器具有与预测器相似的结构,但其目的是基于特征提取器得到的高维特征向量区分其属于源域数据还是目标域数据。相反地,特征提取器旨在生成领域不变的特征来欺骗域判别器,使其无法区分特征属于哪个域,从而最小化域间差异。这种方法与生成对抗网络[69]中的思想相似,后者通常用于图像生成[70]或风格迁移[71]。
在迁移阶段,有标签源域数据和无标签目标数据被同时输入到特征提取器以生成不同领域的高维特征,特征随后被输入到域判别器。域判别器是一个二元分类器,用于分辨特征属于源域或是目标域。首先定义特征的领域标签。不失一般性,可令标签
$ {d}_{i}=0 $ 代表第$ i $ 条特征属于源域,标签$ {d}_{i}=1 $ 代表第$ i $ 条特征属于目标域。每条特征都对应一个领域标签代表其归属,而领域判别器则输出一个0~1之间的预测值$ {y}_{i} $ 代表域判别器针对第$ i $ 条特征的领域预测结果。训练时,域判别器采用二元交叉熵[72]损失来最小化预测结果和真实领域标签之间的差异:$$ {\mathscr{L}}_{ {\mathscr{D}}}=-\frac{1}{N} \sum_{i=1}^{N} d_{i} \log \left(y_{i}\right)+\left(1-d_{i}\right) \log \left(1-y_{i}\right) $$ (18) 与之相反,特征提取器的目标是欺骗域判别器,希望提取出的特征让域判别器判断错误,因此其优化方向与域判别器完全相反,即需要最大化上述的二元交叉熵损失:
$$ {\mathscr{L}}_{{\mathrm{adv}}}=- {\mathscr{L}}_{ {\mathscr{D}}} $$ (19) 结合式(18)和式(19),对抗训练的优化目标可以被表示为:
$$ \theta_D, \theta_F=\underset{\theta_D}{\operatorname{argmin}} \;\underset{\theta_F}{\arg \max } {\mathscr{L}}_{\mathscr{D}}$$ (20) 式中,
$ {\theta }_{D} $ 和$ {\theta }_{F} $ 分别是域判别器和特征提取器的参数。 从式(20)可以发现,域判别器的优化目标是将$ {\mathcal{L}}_{\mathcal{D}} $ 最小化,而特征提取器的优化目标则是将$ {\mathcal{L}}_{\mathcal{D}} $ 最大化,从而实现对抗训练。迁移时,只有目标模型的特征提取器和域判别器的参数是可训练的,其他模块参数保持不变。另外,特征提取器和域判别器是交替优化的—首先以式(19)优化特征提取器,然后以式(18)优化域判别器。这种交替优化策略可以实现式(20)的综合优化目标。为了确保式(20)中两个模块的优化方向是相反的,还需要引入一个梯度反转层[68],在优化梯度反向传播经过域判别器后、抵达特征提取器之前将其取反。这种方法适用性强,在不同任务上都有较好的效果,已经被广泛用于图像视频跨域分类、机械设备寿命跨域预测[73]等领域。表4总结了部分代表性的基于对抗训练的锂电池状态跨域估计方法。文献[74]针对锂电池在不同温度之间的性能迁移提出了一种用于SOC估计的温度自适应迁移网络。类似于文献[60],该方法在迁移时同时采用了基于对抗训练和度量(MMD)的方法,并额外设计了一类伪标签筛选方法以提高伪标签的可信度。方法在半监督、无监督和在线场景下进行了实验,结果表明引入的迁移学习组件将误差至多降低了78%。文献[66]也采用了基于度量和对抗同时迁移的方法,但在MMD的基础上进一步引入了一种相关性距离。该方法还设计了一种密集双向GRU单元用于特征提取,从传感器信号中提取区分特征。文献[75]提出了基于领域自适应的LSTM-DA方法,使用对抗训练自适应方法来提取电池监测数据并获得电池充电状态的映射关系。LSTM-DA在目标域上预测结果的MAE和RMSE分别为4.71%和6.59%。文献[63]提出了用于RUL估计的DIDRLSTM模型,DIDRLSTM引入了残差连接,使得模型可以添加更多的非线性层来学习更具代表性的退化特征,并且引入了MK-MMD与对抗训练相结合,进一步提升迁移性能。基于对抗的方法大多基于类似的模型架构,即判别器−生成器模型,并引入梯度翻转层实现对抗训练。不同方法的差异主要存在于骨干网络和正则项的选择上。
表 4 基于对抗训练的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 概述 数据集与实验结果 基础模型 TATN[74] ● 利用源域模型对目标数据生成伪标签,利用MMD
解决对抗训练中的泛化问题在Panasonic 18650PF数据集上进行不同温度之间的迁移,平均RMSE为1.92% CNN
BiLSTMLSTM-DA[75] ● 使用生成对抗网络来提取电池监测数据并获得电池充电状态的映射关系 以Panasonic 18650PF为源域,LG 18650 -HG2[76]为
目标域进行迁移,RMSE为6.59%LSTM DDAN[60] ● 结合了对抗训练机制和MMD来获得源域和目标域
之间的域不变特征采用Panasonic 18650共4组电池作为不同迁移领域,平均迁移误差1.8% MLP 文献[77] ● 以较少的数据传输需求训练SOC估计网络来适应不同的条件 在文献[78]的数据集上训练后迁移至Panasonic 18650PF数据集,误差RMSE均小于2% BiLSTM
MLP文献[66] ● 同时利用MMD和CORAL作为特征距离度量 采用NASA数据集,基于不同条件的迁移组平均RMSE为7.86% BiGRU DIDR-LSTM[63] ● 引入残差连接和MK-MMD约束将特征映射到RHKS来减少域差异 采用CMAPSS数据集[67]进行RUL预测,共12组不同的迁移设定集 LSTM
Cross-Domain State Estimation of Lithium-ion Batteries: A Review
-
摘要: 对锂电池运行状态进行精确估计和预测是保障其运行性能和安全的重要手段。基于数据驱动的锂电池状态估计算法容易受到实际数据分布偏差影响而导致预测模型性能下降,大大限制了模型的泛化性能,基于迁移学习的锂电池状态跨领域估计算法可以较好地解决此类问题。本文分别从锂电池荷电状态估计、健康状态估计以及剩余寿命估计3类常见应用场景展开讨论,比较不同场景下方法之间的差异,同时揭示它们之间的共性。从技术路线角度出发将常用于状态估计的迁移学习方法归纳为3类:基于微调的迁移、基于度量的迁移和基于对抗训练的迁移。介绍了每一类方法的基本原理、代表性技术和典型应用场景,并基于此3类技术路线对近年基于迁移学习的锂电池状态跨域估计方法进行了全面的归纳介绍。Abstract: Accurate state estimation and prediction of lithium-ion battery are crucial for ensuring operational performance and safety. Data-driven state estimation algorithms are prone to the distribution shift between training data and testing data, limiting their generalization capabilities. Transfer-learning-based cross-domain state estimation algorithms are proposed to address these issues. This paper is organized around three common application scenarios: state of charge estimation, state of health estimation, and remaining useful life estimation. While comparing the differences between methods across various scenarios, the review also reveals their commonalities. From a technical perspective, this paper categorizes commonly used transfer methods into three types: finetuning-based transfer, metric-based transfer, and adversarial training-based transfer. Based on these technical approaches, this paper provides a comprehensive and clear summary of recent cross-domain lithium-ion battery state estimation methods.
-
表 1 本文讨论的锂电池状态
状态名称 含义 作用 SOC 电池当前剩余容量与当前
最大容量的比值反映电池当前实际电量 SOH 电池当前实际容量与标称
额定容量的比值反应电池当前最大容量 RUL 锂电池最大可用容量衰退至
某失效阈值(如80%)所剩余的
循环次数或充放电周期反应电池剩余可用的
循环次数表 2 基于微调的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 概述 数据集与实验结果 基础模型 文献[44] ● 首次将迁移学习应用于锂电池状态估计 在4个电池组上进行实验,采用迁移学习技术后RMSE分别降低了4%,15%,27%,47% LSTM
MLP文献[45] ● 仅对预训练模型的一个层应用微调实现跨健康状况的状态估计 在两个健康状态不同的电池数据集LFP20和LFP27上进行实验,RMSE分别为3.14%和2.31% CNN
LSTM
MLP文献[49] ● 只利用CNN来进行SOC估计 在Panasonic 18650PF中不同工况下采集的子数据集进行跨领域测试,平均测试误差MAE=0.67% CNN 文献[50] ● 提出一种基于多特征融合的电池SOH预测模型 在12块18650锂电池上进行实验,基于不同的基础模型,采用迁移学习后取得了超过50%误差降低 CNN
LSTM文献[51] ● 通过电压分布的增量容量分析来定量表征电池的老化状态 在NASA锂电池数据集上进行实验,跨域测试误差RMSE分别为1.83%,4.96%,1.85%,1.68% LSTM 文献[52] ● ● 提出一个低计算量框架实现电池组串联电池的SOC和SOH估计 在18块SONY US18650VTC5电池上的平均SOC、SOH预测误差分别不大于2.5%和1.25% MLP 文献[53] ● 首先实现电池的退化数据增强,再结合VAE和LSTM进行预测 在CALCE数据集上进行跨域迁移的 RMSE不超过2%;NASA数据集上的RMSE不超过4% LSTM 表 3 基于度量的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 采用度量 概述 数据集与实验结果 基础模型 DTNN[58] ● MMD 在模型多个层之间施加约束项以最小化
跨域特征分布差异在Panasonic 18650PF,A123和INR数据集上进行迁移,平均RMSE为1.09% CNN
MLPCDTL[59] ● MMD 通过可控MDA在源域电池和目标域电池之间进行知识共享 基于文献[64]的数据集进行实验,不同迁移设定下的最大误差不超过7% LSTM
MLPDDAN[60] ● MMD 根据目标域数据标签的可用性,可用于
监督或无监督场景采用Panasonic 18650共4组电池作为不同迁移领域,平均迁移误差1.8% MLP 文献[61] ● MMD 将域适应层集成到 LSTM 中实现跨域
退化特征对齐以NASA数据集为源域,文献[65]的数据集为目标域进行迁移,平均RMSE为2.35% LSTM 文献[62] ● MMD 采用MMD和CNN来减少训练和测试
电池数据之间的分布差异引入一组基于18650PF的新数据集,以及文献[64]的数据集,平均RMSE为0.681% CNN
MLPDDAN[66] ● MMD
CORAL同时利用MMD和CORAL作为特征距
离度量采用NASA数据集,基于不同条件的迁移组平均RMSE为7.86% BiGRU 文献[63] ● MK-MMD 引入残差连接和MK-MMD约束将特征映射到RHKS来减少域差异 采用CMAPSS数据集[67]进行RUL预测,共12组不同的迁移设定集 LSTM 表 4 基于对抗训练的部分锂电池状态跨域估计方法
方法 RUL SOH SOC 概述 数据集与实验结果 基础模型 TATN[74] ● 利用源域模型对目标数据生成伪标签,利用MMD
解决对抗训练中的泛化问题在Panasonic 18650PF数据集上进行不同温度之间的迁移,平均RMSE为1.92% CNN
BiLSTMLSTM-DA[75] ● 使用生成对抗网络来提取电池监测数据并获得电池充电状态的映射关系 以Panasonic 18650PF为源域,LG 18650 -HG2[76]为
目标域进行迁移,RMSE为6.59%LSTM DDAN[60] ● 结合了对抗训练机制和MMD来获得源域和目标域
之间的域不变特征采用Panasonic 18650共4组电池作为不同迁移领域,平均迁移误差1.8% MLP 文献[77] ● 以较少的数据传输需求训练SOC估计网络来适应不同的条件 在文献[78]的数据集上训练后迁移至Panasonic 18650PF数据集,误差RMSE均小于2% BiLSTM
MLP文献[66] ● 同时利用MMD和CORAL作为特征距离度量 采用NASA数据集,基于不同条件的迁移组平均RMSE为7.86% BiGRU DIDR-LSTM[63] ● 引入残差连接和MK-MMD约束将特征映射到RHKS来减少域差异 采用CMAPSS数据集[67]进行RUL预测,共12组不同的迁移设定集 LSTM -
[1] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. doi: 10.1021/acscentsci.7b00288 [2] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79: 151-175 [3] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. [4] SI X S, WANG W, HU C H, et al. Remaining useful life estimation–A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018 [5] LIN C, TANG A, WANG W. A review of SOH estimation methods in Lithium-ion batteries for electric vehicle applications[J]. Energy Procedia, 2015, 75: 1920-1925. doi: 10.1016/j.egypro.2015.07.199 [6] RIVERA-BARRERA J P, MUÑOZ-GALEANO N, SARMIENTO-MALDONADO H O. SoC estimation for lithium-ion batteries: Review and future challenges[J]. Electronics, 2017, 6(4): 102. doi: 10.3390/electronics6040102 [7] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803-1815. doi: 10.11999/JEIT200487 ZHANG Z W, GUO T Z, GAO M Y, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815. doi: 10.11999/JEIT200487 [8] 谢奕展, 程夕明. 锂离子电池状态估计机器学习方法综述[J]. 汽车工程, 2021, 43(11): 1720-1729. XIE Y Z, CHENG X M. Review of state estimation of Lithium-ion battery with machine learning[J]. Automotive Engineering, 2021, 43(11): 1720-1729. [9] SINGIRIKONDA S, OBULESU Y P. Advanced SOC and SOH estimation methods for EV batteries—A review[C]// International Conference on Automation, Signal Processing, Instrumentation and Control. Singapore: Springer Nature Singapore, 2020: 1963-1977. [10] SHEN L, LI J, MENG L, et al. Transfer learning-based state of charge and state of health estimation for Li-ion batteries: A review[J]. IEEE Transactions on Transportation Electrification, 2023. [11] BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. doi: 10.1016/j.jpowsour.2013.05.040 [12] SAHA B, GOEBEL K, Battery Data Set. NASA AMES prognostics data repository[EB/OL] [2024-03-25]. http://ti.arc.nasa.gov/project/prognostic--data--repository/. [13] HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on dempster–shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. doi: 10.1016/j.jpowsour.2011.08.040 [14] KOLLMEYER P. Panasonic 18650PF Li-ion battery data[EB/OL] [2024-03-30]. https://doi.org/10.17632/wykht8y7tg.1. [15] ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386. doi: 10.1037/h0042519 [16] LeCun Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791 [17] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. doi: 10.1207/s15516709cog1402_1 [18] LIU L, SHEN C, VAN DEN HENGEL A. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 4749-4757. [19] SUN M, SONG Z, JIANG X, et al. Learning pooling for convolutional neural network[J]. Neurocomputing, 2017, 224: 96-104. doi: 10.1016/j.neucom.2016.10.049 [20] MA W, LU J. An equivalence of fully connected layer and convolutional layer[EB/OL]. [2024-04-02]. arXiv preprint arXiv: 1712.01252, 2017. [21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-08]. arXiv preprint arXiv: 1409.1556, 2014. [22] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9. [23] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 770-778. [24] SONG X, YANG F, WANG D, et al. Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 88894-88902. doi: 10.1109/ACCESS.2019.2926517 [25] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 [26] 李凯, 胡丽, 宋婷婷. 基于CNN-Bi-LSTM的锂离子电池健康状态估算[J]. 山东电力技术, 2023, 50(10): 66-72. LI K, HU L, SONG T T. Health state estimation of Lithium-ion batteries based on CNN-Bi-LSTM[J]. Shandong Electric Power, 2023, 50(10): 66-72. [27] ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. 2015: 73-78. [28] 李远博, 王海瑞, 叶鑫, 等. 基于并行CNN-Self attention&LSTM的锂电池RUL间接预测[J]. 化工自动化及仪表, 2023, 50(4): 486-492. LI Y B, WANG H R, YE X, et al. Indirect RUL prediction of Lithium-ion battery based on parallel CNN-self attention and LSTM[J]. Control and Instruments in Chemical Industry, 2023, 50(4): 486-492. [29] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2024-04-10]. arXiv preprint arXiv: 1406.1078, 2014. [30] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681. doi: 10.1109/78.650093 [31] HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(02): 107-116. doi: 10.1142/S0218488598000094 [32] DU Z, ZUO L, LI J, et al. Data-driven estimation of remaining useful lifetime and state of charge for lithium-ion battery[J]. IEEE Transactions on Transportation Electrification, 2021, 8(1): 356-367. [33] YANG F, ZHANG S, LI W, et al. State-of-charge estimation of lithium-ion batteries using LSTM and UKF[J]. Energy, 2020, 201: 117664. doi: 10.1016/j.energy.2020.117664 [34] 郝晓亮. 基于LSTM网络的锂离子电池健康状态估计研究[D]. 西安: 西安理工大学, 2023. HAO X L. Research on health state estimation of lithium-ion battery based on LSTM network[D]. Xi’an: Xi’an University of Technology, 2023. [35] JIAO M, WANG D, QIU J. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459: 228051. doi: 10.1016/j.jpowsour.2020.228051 [36] RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. [2024-04-15]. arXiv preprint arXiv: 1609.04747, 2016. [37] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (volume 2: Short thesis). 2016: 207-212. [38] LUO X, ZHOU W, WANG W, et al. Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data[J]. IEEE Access, 2017, 6: 5705-5715. [39] YANG B, WANG Y, ZHAN Y. Lithium battery state-of-charge estimation based on a Bayesian optimization bidirectional long short-term memory neural network[J]. Energies, 2022, 15(13): 4670. doi: 10.3390/en15134670 [40] PELIKAN M, GOLDBERG D E, TSUTSUI S. Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms[C]//SICE 2003 Annual Conference (IEEE Cat. no. 03TH8734). IEEE, 2003, 3: 2738-2743. [41] 李家晨, 朱成杰. 基于BiLSTM神经网络的锂电池SOH快速估计研究[J]. 无线互联科技, 2022, 19(20): 146-148. doi: 10.3969/j.issn.1672-6944.2022.20.045 LI J C, ZHU C J. Research on rapid SOH estimation of lithium battery based on BiLSTM neural network[J]. Wireless Internet Science and Technology, 2022, 19(20): 146-148. doi: 10.3969/j.issn.1672-6944.2022.20.045 [42] 王义, 刘欣, 高德欣. 基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J]. 电子测量技术, 2021, 44(20): 1-5. WANG Y, LIU X, GAO D X. The SOH estimation and RUL prediction of lithium battery based on BiLSTM[J]. Electronic Measurement Technology, 2021, 44(20): 1-5. [43] VRBANČIČ G, PODGORELEC V. Transfer learning with adaptive fine-tuning[J]. IEEE Access, 2020, 8: 196197-196211. doi: 10.1109/ACCESS.2020.3034343 [44] VIDAL C, KOLLMEYER P, CHEMALI E, et al. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2019: 1-6. [45] TIAN J, XIONG R, SHEN W, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291: 116812. doi: 10.1016/j.apenergy.2021.116812 [46] SHU X, SHEN J, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248. doi: 10.1109/TTE.2021.3074638 [47] TAN Y, ZHAO G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8723-8731. [48] 李恒峰. 基于迁移学习的锂离子电池剩余寿命预测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022. Research on remaining life prediction method of lithium-ion battery based on transfer learning[D]. Harbin: Harbin Engineering University, 2022. [49] LIU Y, LI J, ZHANG G, et al. State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning[J]. IEEE Access, 2021, 9: 34177-34187. doi: 10.1109/ACCESS.2021.3057371 [50] FU P, CHU L, HOU Z, et al. State-of-health prediction using transfer learning and a multi-feature fusion model[J]. Sensors, 2022, 22(21): 8530. doi: 10.3390/s22218530 [51] YAO L, WEN J, XU S, et al. State of health estimation based on the long short-term memory network using incremental capacity and transfer learning[J]. Sensors, 2022, 22(20): 7835. doi: 10.3390/s22207835 [52] TANG X, ZHOU Y, GAO F, et al. Joint estimation of state-of-charge and state-of-health for all cells in the battery pack using “leader-follower” strategy[J]. Etransportation, 2023, 15: 100213. doi: 10.1016/j.etran.2022.100213 [53] 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. YIN J, LIU B, SUN G B, et al. Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of li-lon batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. [54] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49-e57. doi: 10.1093/bioinformatics/btl242 [55] GRETTON A, SEJDINOVIC D, STRATHMANN H, et al. Optimal kernel choice for large-scale two-sample tests[J]. Advances in Neural Information Processing Systems, 2012, 25. [56] LI J, CHEN E, DING Z, et al. Maximum density divergence for domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3918-3930. [57] YUAN M, CAI T T. A reproducing kernel Hilbert space approach to functional linear regression[J]. 2010. [58] BIAN C, YANG S, MIAO Q. Cross-domain state-of-charge estimation of li-ion batteries based on deep transfer neural network with multiscale distribution adaptation[J]. IEEE Transactions on Transportation Electrification, 2020, 7(3): 1260-1270. [59] OYEWOLE I, CHEHADE A, KIM Y. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation[J]. Applied Energy, 2022, 312: 118726. doi: 10.1016/j.apenergy.2022.118726 [60] NI Z, LI B, YANG Y. Deep domain adaptation network for transfer learning of state of charge estimation among batteries[J]. Journal of Energy Storage, 2023, 61: 106812. doi: 10.1016/j.est.2023.106812 [61] HAN T, WANG Z, MENG H. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022, 520: 230823. doi: 10.1016/j.jpowsour.2021.230823 [62] MA G, XU S, YANG T, et al. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. [63] FU S, ZHANG Y, LIN L, et al. Deep residual LSTM with domain-invariance for remaining useful life prediction across domains[J]. Reliability Engineering & System Safety, 2021, 216: 108012. [64] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. doi: 10.1038/s41560-019-0356-8 [65] BOLE B, KULKARNI C, DAIGLE M, Randomized battery usage data set, NASA AMES Prognostics Data Repository[EB/OL]. [2024-04-20]. http://ti.arc.nasa.gov/project/prognostic--data--repository. [66] YE Z, YU J. State-of-health estimation for lithium-ion batteries using domain adversarial transfer learning[J]. IEEE Transactions on Power Electronics, 2021, 37(3): 3528-3543. [67] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//2008 International Conference on Prognostics and Health Management. [S.l.]: IEEE, 2008: 1-9. [68] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17(59): 1-35. [69] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. doi: 10.1145/3422622 [70] TAIGMAN Y, POLYAK A, WOLF L. Unsupervised cross-domain image generation[EB/OL]. [2024-04-23]. arXiv preprint arXiv: 1611.02200, 2016. [71] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 2414-2423. [72] MANNOR S, PELEG D, RUBINSTEIN R. The cross entropy method for classification[C]//Proceedings of the 22nd international Conference on Machine Learning. 2005: 561-568. [73] LI X, LI J, ZUO L, et al. Domain adaptive remaining useful life prediction with transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [74] SHEN L, LI J, LIU J, et al. Temperature adaptive transfer network for cross-domain state-of-charge estimation of li-ion batteries[J]. IEEE Transactions on Power Electronics, 2022, 38(3): 3857-3869. [75] BAO X, LIU Y, LIU B, et al. Online lithium battery SOC estimation based on adversarial domain adaptation under a small sample dilemma[J]. Journal of Power Electronics, 2024: 1-10. [76] PHILLIP K, MINA N, MICHAEL S. LG 18650HG2 Li-ion battery data. Mendeley Data V2[EB/OL]. [2024-05-01]. https://doi.org/10.17632/b5mj79w5w9.2 [77] MENG Z, AGYEMAN K A, WANG X. Lithium-Ion battery state of charge estimation with adaptability to changing conditions[J]. IEEE Transactions on Energy Conversion, 2023. [78] BIRKL C. Oxford battery degradation dataset 1. Oxford University, 2017. [79] LIANG J, HU D, FENG J. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[C]//International Conference on Machine Learning. PMLR, 2020: 6028-6039. [80] SUN S, SHI H, WU Y. A survey of multi-source domain adaptation[J]. Information Fusion, 2015, 24: 84-92. doi: 10.1016/j.inffus.2014.12.003 [81] LI X, LI J, LI F, et al. Agile multi-source-free domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(12): 13673-13681. [82] HAN Z, GAO C, LIU J, et al. Parameter-efficient fine-tuning for large models: A comprehensive survey[EB/OL]. [2024-05-10]. arXiv preprint arXiv: 2403.14608, 2024.