-
光学波前是光波相位面的几何表示,能够反映光波在传播过程中的各种物理特性[1]。光学波前传感技术通过检测光波前的相位变化来分析物体的性质和状态,是现代光学和光电子学的重要研究方向[2-4]。如在天文学方面,由于地球大气层的湍流,光波在通过大气时会发生畸变,导致观测到的天体图像模糊不清[5];在微成像方面,样品自身的非均匀性和显微系统的缺陷会导致波前畸变,最终限制高分辨率成像结果[6];在激光系统中,环境因素和系统元件导致的波前畸变,也会最终限制激光在激光加工、激光通信、激光武器等方面的作用精度和距离[7]。然而,因为传统的光学探测器如CCD和CMOS传感器只能检测光的强度,而无法直接获取相位信息,因此为了实现波前测量,通常需要设计复杂的光学系统如干涉仪或者前置微透镜阵列等[8]。这些系统通过干涉或其他光学原理,将相位信息转换为强度变化,从而间接测量波前相位[9]。尽管光学波前传感技术在多个领域取得了显著进展,但由于传统系统设计复杂、体积庞大、成本高昂等问题,实际应用中仍存在诸多挑战。常见的波前传感器,如沙克−哈特曼波前传感器[10]、干涉仪[11]和曲率传感器[12]等,虽然能够提供高精度的波前测量,但其系统复杂性和设备成本限制了在便携设备和大规模应用中的推广。
Recent Advances in Optical Wavefront Sensing Technology
-
摘要: 光学波前是光波相位面的几何表示,光学波前传感技术通过检测光波传播路径中的相位变化来分析物体的性质。该技术广泛应用于大气湍流检测、光学元件缺陷分析、生物样品研究等领域,在天文学、自适应光学、显微成像、激光系统和生物医学等方面具有重要作用。然而,常见探测器仅对光强度敏感,为了探测光学波前,通常需要在探测前端使用一系列复杂的光学元件,这导致系统体积庞大、成本高昂且结构复杂。近年来,随着微纳光学和人工智能等领域的不断进展,涌现出一系列基于新原理、新器件和新算法的集成化、小型化和高性能的光学波前传感技术。该论文系统综述了近期光学波前传感技术的研究进展,并根据其原理将其分为干涉型和非干涉型两大类,具体包括剪切干涉型、光栅干涉型、近场干涉型、算法重构型和维度关联型等技术。最后,总结了当前领域尚存的挑战,并展望了未来可能的研究方向。Abstract: Optical wavefront is the geometric representation of the phase surface of light waves. Optical wavefront sensing technology analyzes the properties of objects by detecting phase changes in the light wave propagation path. This technology is widely used in atmospheric turbulence detection, optical element defect analysis, and biological sample research, playing a crucial role in fields such as astronomy, adaptive optics, microscopic imaging, laser systems, and biomedicine. However, common detectors are only sensitive to light intensity. To detect optical wavefronts, a series of complex optical components are typically required at the detection front end, leading to large system sizes, high costs, and structural complexity. In recent years, with continuous advancements in micro-nano optics and artificial intelligence, a series of integrated, miniaturized, and high-performance optical wavefront sensing technologies based on new principles, devices, and algorithms have emerged. This paper systematically reviews the recent research progress in optical wavefront sensing techniques, including two main types of interferometric and non-interferometric as well as typical methods: shear interferometry type, grating interferometry type, near-field interferometry type, algorithmic reconstruction type, and dimension-associated type. Finally, the current challenges in the field are summarized and the future development directions prospected.
-
Key words:
- optical wavefront sensor /
- micro/nano-optics /
- artificial intelligence /
- adaptive optics
-
[1] BORN M, WOLF E. Principles of optics[M]. Cambridge, UK: Cambridge University Press, 2019. [2] CARBILLET M, FERRARI A, AIME C, et al. Wavefront sensing: From historical roots to the state-of-the-art[J]. European Astronomical Society Publications Series, 2006, 22: 165-185. [3] SALEH B E A, TEICH M C. Fundamentals of photonics[M]. Hoboken, NJ: Wiley-Interscience, 2001. [4] 张以谟. 现代应用光学[M]. 北京: 电子工业出版社, 2018. ZHANG Y M. Contemporary applied optics[M]. Beijing: Publishing House of Electronics Industry, 2018. [5] BARCHERS J D, FRIED D L, LINK D J. Evaluation of the performance of Hartmann sensors in strong scintillation[J]. Applied Optics, 2002, 41(6): 1012-1021. doi: 10.1364/AO.41.001012 [6] EVANKO D, HEINRICHS A, ROSENTHAL C. Milestones in light microscopy[J]. Nature Cell Biol, 2009, 11: 5-20. [7] SALTER P S, BOOTH M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8(1): 110. [8] YUAN S, MA C, FETAYA E, et al. Geometric deep optical sensing[J]. Science, 2023, 379(6637): eade1220. doi: 10.1126/science.ade1220 [9] TYO J S, TURNER T S. Variable-retardance, fourier-transform imaging spectropolarimeters for visible spectrum remote sensing[J]. Applied Optics, 2001, 40(9): 1450-1458. doi: 10.1364/AO.40.001450 [10] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577. [11] LANG W. Nomarski differential interference-contrast microscopy[J]. Zeiss Information, 1968(70):114-120. [12] RODDIER F. Curvature sensing and compensation: A new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223-1225. doi: 10.1364/AO.27.001223 [13] KIM I, MARTINS R J, JANG J, et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 2021, 16(5): 508-524. doi: 10.1038/s41565-021-00895-3 [14] NESHEV D N, MIROSHNICHENKO A E. Enabling smart vision with metasurfaces[J]. Nature Photonics, 2023, 17(1): 26-35. doi: 10.1038/s41566-022-01126-4 [15] WEI J, LI Y, WANG L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 2020, 11(1): 6404. doi: 10.1038/s41467-020-20115-1 [16] WEI J, XU C, DONG B, et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 2021, 15(8): 614-621. doi: 10.1038/s41566-021-00819-6 [17] WEI J X, CHEN Y, LI Y, et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 2023, 17: 171-178. [18] REN Z, ZHANG Z, WEI J, et al. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy[J]. Nature Communications, 2022, 13(1): 3859. doi: 10.1038/s41467-022-31520-z [19] MA C, YUAN S F, CHEUNG P, et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry[J]. Nature, 2022, 604(7905): 266-272. doi: 10.1038/s41586-022-04548-w [20] SILVA A, MONTICONE F, CASTALDI G, et al. Performing mathematical operations with metamaterials[J]. Science, 2014, 343(6167): 160-163. doi: 10.1126/science.1242818 [21] ZHOU Y, ZHENG H, KRAVCHENKO I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5): 316-323. doi: 10.1038/s41566-020-0591-3 [22] ZHOU J, QIAN H, CHEN C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences, 2019, 116(23): 11137-11140. doi: 10.1073/pnas.1820636116 [23] GUO C, XIAO M, MINKOV M, et al. Photonic crystal slab Laplace operator for image differentiation[J]. Optica, 2018, 5(3): 251. doi: 10.1364/OPTICA.5.000251 [24] HU L, HU S, GONG W, et al. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 2020, 45(13): 3741-3744. doi: 10.1364/OL.395579 [25] WU Y, SHARMA M K, VEERARAGHAVAN A. WISH: Wavefront imaging sensor with high resolution[J]. Light, Science & Applications, 2019, 8: 44. [26] HE C, ANTONELLO J, BOOTH M J. Vectorial adaptive optics[EB/OL]. [2024-07-16]. http://arxiv.org/abs/2110.02606v1. [27] LI L, JIA W, JIN C, et al. Single‐shot wavefront sensing with nonlocal thin film optical filters[J]. Laser & Photonics Reviews, 2023, 17(12): 2300426. [28] YI L Y, HOU B, ZHAO H, et al. X-ray-to-visible light-field detection through pixelated colour conversion[J]. Nature, 2023, 618(7964): 281-286. doi: 10.1038/s41586-023-05978-w [29] QU Y, YI S, YANG L, et al. Multimodal light-sensing pixel arrays[J]. Applied Physics Letters, 2022, 121(4): 040501. doi: 10.1063/5.0090138 [30] PARK Y, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578-589. doi: 10.1038/s41566-018-0253-x [31] KWON H, ARBABI E, KAMALI S M, et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces[J]. Nature Photonics, 2020, 14: 109-114. doi: 10.1038/s41566-019-0536-x [32] ZHOU J, WU Q, ZHAO J, et al. Fourier optical spin splitting microscopy[J]. Physical Review Letters, 2022, 129(2): 020801. doi: 10.1103/PhysRevLett.129.020801 [33] WANG X, WANG H, WANG J, et al. Single-shot isotropic differential interference contrast microscopy[J]. Nature Communications, 2023, 14(1): 2063. doi: 10.1038/s41467-023-37606-6 [34] LI L, WANG S, ZHAO F, et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens[J]. Science Advances, 2024, 10(1): eadl0501. doi: 10.1126/sciadv.adl0501 [35] BON P, MAUCORT G, WATTELLIER B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells[J]. Optics Express, 2009, 17(15): 13080-13094. doi: 10.1364/OE.17.013080 [36] CHANTELOUP J C. Multiple-wave lateral shearing interferometry for wave-front sensing[J]. Applied Optics, 2005, 44(9): 1559. doi: 10.1364/AO.44.001559 [37] 刘克, 张孝天, 钟慧, 等. 四波前横向剪切干涉仪的关键技术研究[J]. 光学学报, 2023, 43(15): 1512001. doi: 10.3788/AOS230738 LIU K, ZHANG X T, ZHONG H, et al. Key technologies of quadri-wave lateral shearing interferometer[J]. Acta Optica Sinica, 2023, 43(15): 1512001. doi: 10.3788/AOS230738 [38] SIVARAMAKRISHNAN S, WANG A, GILL P R, et al. Enhanced angle sensitive pixels for light field imaging[C]//Proceedings of the International Electron Devices Meeting. New York: IEEE, 2011. [39] WANG A, GILL P, MOLNAR A. Angle sensitive pixels in CMOS for lensless 3D imaging[C]//Proceedings of the IEEE Custom Integrated Circuits Conference. New York: IEEE, 2009: 371-374. [40] JAYASURIYA S, SIVARAMAKRISHNAN S, CHUANG E, et al. Dual light field and polarization imaging using CMOS diffractive image sensors[J]. Optics Letters, 2015, 40(10): 2433. doi: 10.1364/OL.40.002433 [41] LIU J N, PAIELLA R. Gradient-metasurface directional photodetectors[J]. Optics Letters, 2024, 49(6): 1417. doi: 10.1364/OL.509642 [42] LIU J, WANG H, LI Y, et al. Asymmetric metasurface photodetectors for single-shot quantitative phase imaging[J]. Nanophotonics, 2023, 12(17): 3519-3528. doi: 10.1515/nanoph-2023-0354 [43] LIU J, WANG H, KOGOS L C, et al. Optical spatial filtering with plasmonic directional image sensors[J]. Optics Express, 2022, 30(16): 29074. doi: 10.1364/OE.460556 [44] YANG Z, WANG Z, WANG Y, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6 [45] WANG Y, WANG Z, FENG X, et al. Dielectric metalens-based Hartmann–Shack array for a high-efficiency optical multiparameter detection system[J]. Photonics Research, 2020, 8(4): 482. doi: 10.1364/PRJ.383772 [46] DUBOSE T B, GARDNER D F, WATNIK A T. Intensity-enhanced deep network wavefront reconstruction in Shack–Hartmann sensors[J]. Optics Letters, 2020, 45(7): 1699. doi: 10.1364/OL.389895 [47] HOWARD S, ESSLINGER J, WANG R H W, et al. Hyperspectral compressive wavefront sensing[J]. High Power Laser Science and Engineering, 2023, 11: e32. doi: 10.1017/hpl.2022.35 [48] ZHANG S, YE Z, WANG Y, et al. Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale[J]. Physical Review Letters, 2012, 109(19): 193902. doi: 10.1103/PhysRevLett.109.193902 [49] KIM S J, KANG J H, MUTLU M, et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting[J]. Nature Communications, 2018, 9(1): 316. doi: 10.1038/s41467-017-02496-y [50] SMALLEY J S T, REN X, LEE J Y, et al. Subwavelength pixelated CMOS color sensors based on anti-Hermitian metasurface[J]. Nature Communications, 2020, 11(1): 3916. doi: 10.1038/s41467-020-17743-y [51] YI S, XIANG J, ZHOU M, et al. Angle-based wavefront sensing enabled by the near fields of flat optics[J]. Nature Communications, 2021, 12(1): 6002. doi: 10.1038/s41467-021-26169-z [52] NORRIS B R M, WEI J, BETTERS C H, et al. An all-photonic focal-plane wavefront sensor[J]. Nature Communications, 2020, 11(1): 5335. doi: 10.1038/s41467-020-19117-w [53] MASON A C, OSHINSKY M L, HOY R R. Hyperacute directional hearing in a microscale auditory system[J]. Nature, 2001, 410(6829): 686-690. doi: 10.1038/35070564 [54] NARINS P M. In a fly’s ear[J]. Nature, 2001, 410(6829): 644-645. doi: 10.1038/35070695 [55] LEE T, NOMURA T, SU X, et al. Fano-like acoustic resonance for subwavelength directional sensing: 0–360 degree measurement[J]. Advanced Science, 2020, 7(6): 1903101. doi: 10.1002/advs.201903101 [56] KUNTZMAN M L, HALL N A. Sound source localization inspired by the ears of the O rmia ochracea[J]. Applied Physics Letters, 2014, 105(3): 033701. doi: 10.1063/1.4887370 [57] YI S, ZHOU M, YU Z, et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals[J]. Nature Nanotechnology, 2018, 13(12): 1143-1147. doi: 10.1038/s41565-018-0278-9 [58] PAN Q, SUN Y, SU M, et al. Circular subwavelength photodetectors for 3D space exploration[J]. Advanced Optical Materials, 2022, 10(6): 2102163. doi: 10.1002/adom.202102163 [59] GUO Q, SHI Z, HUANG Y W, et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders[J]. Proceedings of the National Academy of Sciences, 2019, 116(46): 22959-22965. doi: 10.1073/pnas.1912154116 [60] SOLDEVILA F, DURÁN V, CLEMENTE P, et al. Phase imaging by spatial wavefront sampling[J]. Optica, 2018, 5(2): 164. doi: 10.1364/OPTICA.5.000164 [61] HU J, LIAO K, DINÇ N U, et al. Subwavelength imaging using a solid-immersion diffractive optical processor[J]. eLight, 2024, 4(1): 8. doi: 10.1186/s43593-024-00067-5 [62] 倪一博, 闻顺, 沈子程, 等. 基于超构表面的多维光场感知[J]. 中国激光, 2021, 48(19): 1918003. NI Y B, WEN S, SHEN Z C, et al. Multidimensional light field sensing based on metasurfaces[J] Chinese Journal of Lasers, 2021, 48(19): 1918003. [63] 钟慧, 李艳秋, 刘克, 等. 嵌入式相位传感的多功能 Stokes-Mueller 偏振仪[J]. 光学学报, 2023, 43(2): 0212003. doi: 10.3788/AOS221272 ZHONG H, LI Y Q, LIU K, et. al. Multifunctional stokes-mueller polarimeter based on embedded phase[J]. Acta Optica Sinica, 2023, 43(2): 0212003. doi: 10.3788/AOS221272