-
现实世界中的很多复杂系统,都是由大量同质或者异质的个体组成,而这些系统所表现出来的功能与特性,包括一些涌现出来的复杂行为和现象,很大程度上都根植于上述个体之间的相互作用。网络是用来表示这类由大量个体与个体间相互作用所构成的复杂系统的最优数学工具,这些网络包括但不限于社交网络[1]、生物网络[2]、信息网络[3]、交通网络[4]、技术网络[5]、经济网络[6]等。网络科学作为新兴交叉学科,专注于研究网络的结构、演化和功能[7-10],其中链路预测是一个基础性的任务,旨在基于已知的拓扑结构信息预测缺失的连边以及未来可能出现的连边[11-13]。因为链路预测问题同时具备数学上的简洁性、理论上的基础性和应用上的广泛性,并且好的链路预测方法往往与对网络结构和演化的深度理解紧密结合,所以链路预测的研究受到了越来越多的关注,目前已经成为网络科学领域最具活力的分支之一[14]。
在过去的二十年中,研究者们提出了成百上千种链路预测算法(一些代表性的研究工作参见文献[15-25]),极大地拓展了链路预测研究的前沿阵地。一般而言,在一个新兴领域发展的初期,大部分的研究人员会投身于前沿性的研究。但是,待该领域具备一定成熟度后,批判性的反思研究就变得重要,因为如果没有坚实的理论基础、科学的方法、达成共识的研究框架和广泛共享的标准数据库,许多研究结果可能是不可信的,或者不同研究人员使用截然不同的方法选取网络、处理样本和评价算法,使得后续的研究者既很难重现以前的结果,也没有办法开展横向的比较分析。类似的问题已在人类心理−行为研究中显现出来。如开放科学合作组织重复进行了100项心理学实验,发现仅有不到40%的实验结果能够重现[26]。此外,他们还复现了2011—2014年发表在《美国经济评论》和《经济学季刊》上的18项经济学实验室实验,以及2010年至2015年间发表在《自然》和《科学》上的21项社会科学实验研究。在前者的情况下,他们在11次重复实验(61%)中报告了与原始研究相同方向上的显著效应,而复现实验的效应量平均为原始效应量的66%[27];在后者的情况下,这两个数字分别是13次(62%)和50%[28]。网络科学的研究人员或许会乐观地认为,基于数学、物理学和计算机科学的网络科学,其研究方法是完全定量的,因此不会出现社会科学研究中遇到的问题。但实际上,如果我们在网络选取、链路抽样、模型训练方法、算法评价指标等问题上无法达成基本共识,并在实施过程中随意选择且描述的时候语焉不详,那么在社会科学实验研究中出现的问题同样会在链路预测研究中出现,从而导致学术资源的巨大浪费。
一个合理的链路预测研究框架,其最基本的功能就是在给定任何一个链路预测算法后,能够公平且准确地对算法性能进行评价,使得算法研究者可以通过此评价横向比较不同算法,应用研究者可以基于此评价提前判断该算法在具体领域应用的效果。在给定链路预测算法后,至少需要以下4个步骤来获得对算法的评价:1)选择一批用于评价算法性能的网络,既包括人工生成的网络,也包括真实的网络,但后者往往更具说服力;2)选择合适的数据抽样方法,将网络中的链路分成两个部分,一部分用来训练模型和确定参数,一部分用来评价算法性能;3)确定一种公平的方法来训练模型和学习参数,这种方法要保证用于测试的链路信息是严格未知的;4)选择合适的评价指标对算法表现给出定量化的打分。
在全面回顾链路预测已有的相关研究后,同时发现了可忧和可喜的两面:一方面,当前研究尚未就相关问题达成广泛的学术共识,导致一些显著的缺陷频繁出现在近期的学术出版物中,很多研究人员在上述重要问题上随意选择或片面选择,使得其结论可信度较低;另一方面,目前已经有一些网络科学领域的领军科学家注意到这些问题,并且完成了一些虽然初步但具有重大借鉴意义的研究工作。本文所讨论的问题,是链路预测中重要的问题,但还没有形成系统、成熟的研究成果。讨论这些问题的目的是:1)明确识别并指出当前链路预测研究中存在的缺陷与谬论;2)报告近几年围绕相关问题取得的最新结果,包括若干尚未发表的重要探索;3)指出为了夯实链路预测研究的基础,目前亟须回答的问题和应该开展的研究。本文旨在推动形成一个具有广泛共识的链路预测研究框架,使得后续的研究成果具有更好的可信度、可比较性和可复现性。
On Fundamentals of Link Prediction
-
摘要: 链路预测是网络科学最具活力的分支之一,其目标是基于已知的网络拓扑结构估计未观察到的链接的存在可能性。该文对链路预测中仍需重点关注的4个基础性问题——网络选取、链路抽样、模型训练和算法评价进行了研究,报告了这4个方面目前的研究进展,并指出尚未解决的关键问题。最后,对亟待解决的一些关键研究问题进行了总结。
-
关键词:
- 链路预测 /
- 网络选取 /
- 链路抽样;模型训练;算法评价
Abstract: Link prediction is one of the most productive branches in network science, aiming to estimate the likelihoods of unobserved links based on known network topology. This paper critically examines four fundamental issues in link prediction, say network selection, link sampling, model training and algorithm evaluation. It reviews the current research progresses and highlights some significant yet unresolved issues that urgently require scientific answers. -
[1] VEGA-REDONDO F. Complex social networks[M]. Cambridge: Cambridge University Press, 2007. [2] PAVLOPOULOS G A, SECRIER M, MOSCHOPOULOS C N, et al. Using graph theory to analyze biological networks[J]. BioData Mining, 2011, 4: 10. doi: 10.1186/1756-0381-4-10 [3] SHI C, LI Y T, ZHANG J W, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 17-37. doi: 10.1109/TKDE.2016.2598561 [4] GANIN A A, KITSAK M, MARCHESE D, et al. Resilience and efficiency in transportation networks[J]. Science Advances, 2017, 3(12): e1701079. doi: 10.1126/sciadv.1701079 [5] ALBERT R, ALBERT I, NAKARADO G L. Structural vulnerability of the North American power grid[J]. Physical Review E, 2004, 69(2): 025103. doi: 10.1103/PhysRevE.69.025103 [6] SCHWEITZER F, FAGIOLO G, SORNETTE D, et al. Economic networks: The new challenges[J]. Science, 2009, 325(5939): 422-425. doi: 10.1126/science.1173644 [7] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012. WANG X F, LI X, CHEN G R. Network science: An introduction[M]. Beijing: Higher Education Press, 2012. [8] PÓSFAI M, BARABÁSI A L. Network science[M]. Cambridge, Cambridge University Press, 2016. [9] NEWMAN M. Networks[M]. 2nd ed. Oxford: Oxford University Press, 2018. [10] 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J]. 电子科技大学学报, 2014, 43(1): 1-5. doi: 10.3969/j.issn.1001-0548.2014.01.001 ZHOU T, ZHANG Z K, CHEN G R, et al. The opportunities and challenges of complex networks research[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1): 1-5. doi: 10.3969/j.issn.1001-0548.2014.01.001 [11] 吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39(5): 651-661. doi: 10.3969/j.issn.1001-0548.2010.05.002 LYU L Y. Link prediction on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(5): 651-661. doi: 10.3969/j.issn.1001-0548.2010.05.002 [12] LYU L Y, ZHOU T. Link prediction in complex networks: A survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170. doi: 10.1016/j.physa.2010.11.027 [13] 吕琳媛, 周涛. 链路预测[M]. 北京: 高等教育出版社, 2013. LYU L Y, ZHOU T. Link prediction[M]. Beijing: Higher Education Press, 2013. [14] ZHOU T. Progresses and challenges in link prediction[J]. iScience, 2021, 24(11): 103217. doi: 10.1016/j.isci.2021.103217 [15] LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031. doi: 10.1002/asi.20591 [16] CLAUSET A, MOORE C, NEWMAN M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191): 98-101. doi: 10.1038/nature06830 [17] GUIMERÀ R, SALES-PARDO M. Missing and spurious interactions and the reconstruction of complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22073-22078. [18] ZHOU T, LYU L Y, ZHANG Y C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630. doi: 10.1140/epjb/e2009-00335-8 [19] CANNISTRACI C V, ALANIS-LOBATO G, RAVASI T. Erratum: From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2015, 5: 9794. doi: 10.1038/srep09794 [20] LYU L Y, PAN L M, ZHOU T, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2325-2330. [21] PAN L M, ZHOU T, LYU L Y, et al. Predicting missing links and identifying spurious links via likelihood analysis[J]. Scientific Reports, 2016, 6: 22955. doi: 10.1038/srep22955 [22] PECH R, HAO D, PAN L M, et al. Link prediction via matrix completion[J]. EPL (Europhysics Letters), 2017, 117(3): 38002. doi: 10.1209/0295-5075/117/38002 [23] XU T, ZOU L. Link prediction with simple path-aware graph neural networks[C]//International Conference on Neural Information Processing. Singapore: Springer, 2024: 570-582. [24] KOVÁCS I A, LUCK K, SPIROHN K, et al. Network-based prediction of protein interactions[J]. Nature Communications, 2019, 10(1): 1240. doi: 10.1038/s41467-019-09177-y [25] GHASEMIAN A, HOSSEINMARDI H, GALSTYAN A, et al. Stacking models for nearly optimal link prediction in complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23393-23400. [26] COLLABORATION O S. Estimating the reproducibility of psychological science[J]. Science, 2015, 349(6251): eaac4716. doi: 10.1126/science.aac4716 [27] CAMERER C F, DREBER A, FORSELL E, et al. Evaluating replicability of laboratory experiments in economics[J]. Science, 2016, 351(6280): 1433-1436. doi: 10.1126/science.aaf0918 [28] CAMERER C F, DREBER A, HOLZMEISTER F, et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015[J]. Nature Human Behaviour, 2018, 2(9): 637-644. doi: 10.1038/s41562-018-0399-z [29] VON MERING C, KRAUSE R, SNEL B, et al. Comparative assessment of large-scale data sets of protein-protein interactions[J]. Nature, 2002, 417(6887): 399-403. doi: 10.1038/nature750 [30] KOSSINETS G. Effects of missing data in social networks[J]. Social Networks, 2006, 28(3): 247-268. doi: 10.1016/j.socnet.2005.07.002 [31] STUMPF M P H, THORNE T, DE SILVA E, et al. Estimating the size of the human interactome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19): 6959-6964. [32] CAMACHO D M, COLLINS K M, POWERS R K, et al. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7): 1581-1592. doi: 10.1016/j.cell.2018.05.015 [33] HASAN M A L, ZAKI M J. A survey of link prediction in social networks[M]//AGGARWAL C. Social Network Data Analytics. Boston, MA: Springer, 2011: 243-275. [34] DAUD N N, HAMID S H A, SAADOON M, et al. Applications of link prediction in social networks: A review[J]. Journal of Network and Computer Applications, 2020, 166: 102716. doi: 10.1016/j.jnca.2020.102716 [35] SULAIMANY S, KHANSARI M, NEJAD A M. Link prediction potentials for biological networks[J]. International Journal of Data Mining and Bioinformatics, 2018, 20(2): 161. doi: 10.1504/IJDMB.2018.093684 [36] ZHOU T, LEE Y L, WANG G N. Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 564: 125532. doi: 10.1016/j.physa.2020.125532 [37] 李艳丽, 周涛. 链路预测中的局部相似性指标[J]. 电子科技大学学报, 2021, 50(3): 422-427. doi: 10.12178/1001-0548.2021062 LI Y L, ZHOU T. Local similarity indices in link prediction[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 422-427. doi: 10.12178/1001-0548.2021062 [38] MUSCOLONI A, CANNISTRACI C V. “Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks[J]. iScience, 2023, 26(1): 105697. doi: 10.1016/j.isci.2022.105697 [39] MUSCOLONI A, MICHIELI U, ZHANG Y, et al. Adaptive network automata modelling of complex networks[EB/OL]. [2022-05-10]. https://doi.org/10.20944/preprints202012.0808.v3. [40] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163-175. doi: 10.3969/j.issn.1001-0548.2012.02.001 ZHU Y X, LYU L Y. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 163-175. doi: 10.3969/j.issn.1001-0548.2012.02.001 [41] HE Y J, RAN Y, DI Z, et al. Uncovering multi-order popularity and similarity mechanisms in link prediction by graphlet predictors[EB/OL]. [2024-08-18]. https://arxiv.org/pdf/2408.09406. [42] HANLEY J A, MCNEIL B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1): 29-36. doi: 10.1148/radiology.143.1.7063747 [43] KENDALL M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81-93. doi: 10.2307/2332226 [44] SPEARMAN C. The proof and measurement of association between two things[J]. International Journal of Epidemiology, 2010, 39(5): 1137-1150. doi: 10.1093/ije/dyq191 [45] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393: 440-442. doi: 10.1038/30918 [46] BARTHÉLEMY M. Spatial networks[J]. Physics Reports, 2011, 499(1-3): 1-101. [47] TELESFORD Q K, JOYCE K E, HAYASAKA S, et al. The ubiquity of small-world networks[J]. Brain Connectivity, 2011, 1(5): 367-375. doi: 10.1089/brain.2011.0038 [48] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509 [49] BROIDO A D, CLAUSET A. Scale-free networks are rare[J]. Nature Communications, 2019, 10(1): 1017. doi: 10.1038/s41467-019-08746-5 [50] MISLOVE A, MARCON M, GUMMADI K P, et al. Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2007. [51] NEWMAN M E J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 404-409. [52] ZHANG P P, DI Z R, FAN Y, et al. Model and empirical study on some collaboration networks[J]. Physica A, 2006, 360(2): 599-616. doi: 10.1016/j.physa.2005.05.044 [53] AMARAL L A, SCALA A, BARTHELEMY M, et al. Classes of small-world networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11149-11152. [54] GUIMERÀ R, MOSSA S, TURTSCHI A, et al. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(22): 7794-7799. [55] SEN P, DASGUPTA S, CHATTERJEE A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(3): 036106. [56] LATORA V, MARCHIORI M. Is the Boston subway a small-world network?[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 314(1-4): 109-113. [57] SIENKIEWICZ J, HOŁYST J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(4): 046127. [58] XIE Y B, ZHOU T, BAI W J, et al. Geographical networks evolving with an optimal policy[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3): 036106. [59] NEWMAN M E J, PARK J. Why social networks are different from other types of networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(3): 036122. [60] HOLME P, LILJEROS F, EDLING C R, et al. Network bipartivity[J]. Physical Review E, 2003, 68(5): 056107. doi: 10.1103/PhysRevE.68.056107 [61] HOLME P, EDLING C R, LILJEROS F. Structure and time evolution of an Internet dating community[J]. Social Networks, 2004, 26(2): 155-174. doi: 10.1016/j.socnet.2004.01.007 [62] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. [63] MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: Simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827. doi: 10.1126/science.298.5594.824 [64] MILO R, ITZKOVITZ S, KASHTAN N, et al. Superfamilies of evolved and designed networks[J]. Science, 2004, 303(5663): 1538-1542. doi: 10.1126/science.1089167 [65] ZHOU S, MONDRAGON R J. The rich-club phenomenon in the Internet topology[J]. IEEE Communications Letters, 2004, 8(3): 180-182. doi: 10.1109/LCOMM.2004.823426 [66] COLIZZA V, FLAMMINI A, SERRANO M A, et al. Detecting rich-club ordering in complex networks[J]. Nature Physics, 2006, 2: 110-115. doi: 10.1038/nphys209 [67] SONG C M, HAVLIN S, MAKSE H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024): 392-395. doi: 10.1038/nature03248 [68] YANG J X, ZHANG X D. Revealing how network structure affects accuracy of link prediction[J]. The European Physical Journal B, 2017, 90(8): 157. doi: 10.1140/epjb/e2017-70599-4 [69] HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning: data mining, inference, and prediction[M]. 2nd ed. New York: Springer, 2009. [70] LESKOVEC J, FALOUTSOS C. Sampling from large graphs[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006. [71] AHMED N K, NEVILLE J, KOMPELLA R. Network sampling[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 8(2): 1-56. [72] HOLME P, SARAMÄKI J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. doi: 10.1016/j.physrep.2012.03.001 [73] AMARAL L A. A truer measure of our ignorance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19): 6795-6796. [74] ZHU Y X, LYU L Y, ZHANG Q M, et al. Uncovering missing links with cold ends[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(22): 5769-5778. doi: 10.1016/j.physa.2012.06.003 [75] LEICHT E A, HOLME P, NEWMAN M E. Vertex similarity in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(2): 026120. [76] HE X, GHASEMIAN A, LEE E, et al. Link prediction accuracy on real-world networks under non-uniform missing-edge patterns[J]. PLoS One, 2024, 19(7): e0306883. doi: 10.1371/journal.pone.0306883 [77] ROZEMBERCZKI B, KISS O, SARKAR R. Little ball of fur: A python library for graph sampling[C]//Proceedings of the Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 3133-3140. [78] KIVELA M, ARENAS A, BARTHELEMY M, et al. Multilayer networks[J]. Journal of Complex Networks, 2014, 2(3): 203-271. doi: 10.1093/comnet/cnu016 [79] BICK C, GROSS E, HARRINGTON H A, et al. What are higher-order networks?[J]. SIAM Review, 2023, 65(3): 686-731. doi: 10.1137/21M1414024 [80] VARMA S, SIMON R. Bias in error estimation when using cross-validation for model selection[J]. BMC Bioinformatics, 2006, 7: 91. doi: 10.1186/1471-2105-7-91 [81] CAWLEY G C, TALBOT N L C. On over-fitting in model selection and subsequent selection bias in performance evaluation[J]. Journal of Machine Learning Research, 2010, 11: 2079-2107. [82] SHI C, PAN L M, HU H, et al. Homophily modulates double descent generalization in graph convolution networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(8): e2309504121. [83] NAKKIRAN P, KAPLUN G, BANSAL Y, et al. Deep double descent: Where bigger models and more data hurt[J]. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(12): 124003. doi: 10.1088/1742-5468/ac3a74 [84] KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[J]. IJCAI International Joint Conference on Artificial Intelligence, 1995, 2: 1137-1143. [85] BUCKLAND M, GEY F. The relationship between recall and precision[J]. Journal of the American Society for Information Science, 1994, 45(1): 12-19. doi: 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L [86] MATTHEWS B W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme[J]. Biochim Biophys Acta, 1975, 405(2): 442-451. doi: 10.1016/0005-2795(75)90109-9 [87] JÄRVELIN K, KEKÄLÄINEN J. Cumulated gain-based evaluation of IR techniques[J]. ACM Transactions on Information Systems, 2002, 20(4): 422-446. doi: 10.1145/582415.582418 [88] DAVIS J, GOADRICH M. The relationship between Precision-Recall and ROC curves[C]//Proceedings of the 23rd international conference on Machine learning. New York: ACM, 2006: 233-240. [89] MUSCOLONI A, CANNISTRACI C V. Early retrieval problem and link prediction evaluation via the area under the magnified ROC[EB/OL]. [2024-05-10]. https://doi.org/10.20944/preprints202209.0277.v2. [90] BI Y, JIAO X, LEE Y L, et al. Inconsistency of evaluation metrics in link prediction[EB/OL]. [2024-02-24]. https://arxiv.org/pdf/2402.08893. [91] LOBO J M, JIMÉNEZ-VALVERDE A, REAL R. AUC: A misleading measure of the performance of predictive distribution models[J]. Global Ecology and Biogeography, 2008, 17(2): 145-151. doi: 10.1111/j.1466-8238.2007.00358.x [92] YANG Y, LICHTENWALTER R N, CHAWLA N V. Evaluating link prediction methods[J]. Knowledge and Information Systems, 2015, 45(3): 751-782. doi: 10.1007/s10115-014-0789-0 [93] LICHTNWALTER R, CHAWLA N V. Link prediction: Fair and effective evaluation[C]//Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: IEEE, 2012: 376-383. [94] SAITO T, REHMSMEIER M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[J]. PLoS One, 2015, 10(3): e0118432. doi: 10.1371/journal.pone.0118432 [95] HAND D J. Measuring classifier performance: Acoherent alternative to the area under the ROC curve[J]. Machine Learning, 2009, 77(1): 103-123. doi: 10.1007/s10994-009-5119-5 [96] KOU H Z, LIU H W, DUAN Y C, et al. Building trust/distrust relationships on signed social service network through privacy-aware link prediction process[J]. Applied Soft Computing, 2021, 100: 106942. doi: 10.1016/j.asoc.2020.106942 [97] ZHOU T. Discriminating abilities of threshold-free evaluation metrics in link prediction[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 615: 128529. doi: 10.1016/j.physa.2023.128529 [98] JIAO X, WAN S, LIU Q, et al. Comparing discriminating abilities of evaluation metrics in link prediction[J]. Journal of Physics: Complexity, 2024, 5(2): 025014. doi: 10.1088/2632-072X/ad46be
计量
- 文章访问数: 1599
- HTML全文浏览量: 208
- PDF下载量: 17
- 被引次数: 0