-
随着新能源汽车、人工智能、量子计算、5G/6G、低轨卫星等新兴科技的飞速发展,人类活动和社会经济发展对能源的需求大幅增加,电能作为基础核心能源,对其高质量、高效率地利用是推动“新一轮工业革命”的关键。功率半导体芯片是“电力+算力”协同融合与应用的基础核心装置,是提高电能使用效率、促进上述新兴产业发展与突破的关键。然而,目前应用最广泛的硅基功率半导体芯片由于材料物理限制,已经很难满足日益增加的“电力+算力”需求。第三代半导体氮化镓(GaN)凭借其宽禁带(3.4 eV)[1]、高临界击穿电场、高电子饱和速度等材料优越性能,正逐渐成为功率半导体领域的主流材料。同时,铝镓氮(AlGaN)和氮化镓所形成的异质结由于极化不连续性可以在异质结界面形成量子阱,并在量子阱中极化诱导出具有高迁移率、高浓度的二维电子气(2DEG)[2]。因此,基于AlGaN/GaN异质结的高电子迁移率晶体管(HEMTs)使氮化镓器件在高频、高效、高功率密度的功率转换系统中具有巨大潜力[3]。此外,氮化镓HEMTs在高温应用下的稳定性和抗辐照能力使其在航空航天等极端环境中也有着很好的应用前景[4]。
电力电子应用中,提高系统工作频率是提高系统功率密度的主要方法,因为高频应用可降低电容、电感和变压器等无源器件的体积[5]。然而,基于分立GaN功率器件的电力电子系统,器件之间互联寄生效应是限制系统高频工作性能的主要瓶颈[6-7]。为了充分发挥氮化镓器件高速开关的性能优势,能够最大限度减少寄生电感、降低系统开关损耗、提高整个系统的效率、稳健性、工作频率的全氮化镓单片功率集成技术需要被重点关注,该技术是发展高效、高功率和小型化功率变换系统的最佳技术方案之一[8-9]。
GaN-Based Single-Chip Power Integration Technology
-
摘要: 宽禁带、高临界击穿电场和高饱和电子速度的材料优越性,以及铝镓氮/氮化镓(AlGaN/GaN)异质结能通过极化不连续性在其界面极化诱导出具有高浓度、高迁移率的二维电子气并制备出高电子迁移率晶体管,使氮化镓器件正成为下一代功率和射频应用领域的新型高性能电子器件。氮化镓基单片功率集成技术是减小寄生电感影响、提升集成电路开关速度、降低系统功耗和实现系统小型化的关键技术。该文围绕氮化镓单片功率集成技术,对p/n双极性沟道异质结外延结构、单片异质集成、全氮化镓集成电路和p沟道器件关键技术的研究进展进行了全面分析。Abstract: The superior material properties with wide bandgap, large critical electric field, and high saturated electron velocity, in combination with the high density and high mobility two-dimensional electron gas induced at the AlGaN/GaN heterojunction by polarization discontinuity, and thus the related high electron mobility transistors, make GaN devices become new high performance electronic devices for next-generation power and RF applications. The demand for GaN-based power devices with excellent performance in emerging technology such as electric vehicles and AI is rapidly increasing. GaN single-chip power integration technology is the key approach to reduce the influence of parasitic inductance, improve the switching speed of IC, cut down the power consumption and realize the miniaturization for the whole system. Based on GaN single-chip power integration technology, this review paper presents a comprehensive and global overview for the research progress of the reported double-heterojunction based epitaxial structure with p-/n-channels, monolithic heterogeneous integration, All-GaN integrated circuits, and the core technology of p-channel devices.
-
Key words:
- GaN /
- heterojunction /
- 2DEG /
- HEMTs /
- GaN single-chip power integration /
- p-channel
-
图 1 基于p-GaN栅GaN HEMTs的单片功率集成方案[5]
图 12 无金工艺下氮化镓功率集成外延结构示意图[31]
-
[1] ZHANG Y H, ZUBAIR A, LIU Z H, et al. GaN FinFETs and trigate devices for power and RF applications: Review and perspective[J]. Semiconductor Science Technology, 2021, 36(5): 054001. doi: 10.1088/1361-6641/abde17 [2] AMBACHER O, FOUTZ B, SMART J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN /GaN heterostructures[J]. Journal of Applied Physics, 2000, 87(1): 334-344. doi: 10.1063/1.371866 [3] AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 163001. doi: 10.1088/1361-6463/aaaf9d [4] MENEGHINI M, DE SANTI C, ABID I, et al. GaN-based power devices: Physics, reliability, and perspectives[J]. Journal of Applied Physics, 2021, 130(18): 181101. doi: 10.1063/5.0061354 [5] WEI J, ZHENG Z Y, TANG G F, et al. GaN power integration technology and its future prospects[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1365-1382. doi: 10.1109/TED.2023.3341053 [6] REUSCH D, STRYDOM J. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter[C]//Proceedings of the 28th Annual IEEE Applied Power Electronics Conference and Exposition. New York: IEEE, 2013: 649-655. [7] WANG K P, WANG L L, YANG X, et al. A multiloop method for minimization of parasitic inductance in GaN-Based high-frequency DC–DC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4728-4740. doi: 10.1109/TPEL.2016.2597183 [8] ZHENG Z Y, ZHANG L, SONG W J, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electronics, 2021, 4(8): 595-603. doi: 10.1038/s41928-021-00611-y [9] WEI J, TANG G F, XIE R L, et al. GaN power IC technology on p-GaN gate HEMT platform[J]. Japanese Journal of Applied Physics, 2020, 59: SG0801. [10] CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. doi: 10.1109/TED.2017.2657579 [11] WANG C C, HUA M Y, CHEN J T, et al. E-Mode p-n junction /AlGaN/GaN (PNJ) HEMTs[J]. IEEE Electron Device Letters, 2020, 41(4): 545-548. doi: 10.1109/LED.2020.2977143 [12] ROSSETTO I, MENEGHINI M, HILT O, et al. Time- dependent failure of GaN-on-Si power HEMTs with p-GaN gate[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2334-2339. doi: 10.1109/TED.2016.2553721 [13] PERREAULT D J, SULLIVAN C R, RIVAS J M, GaN in switched-mode power amplifier[M]//Integrated Circuits and Systems. Cham: Springer International Publishing, 2018: 181-223. [14] CHEN J B, LIU Z H, WANG H Y, et al. A GaN complementary FET inverter with excellent noise margins monolithically integrated with power gate-injection HEMTs[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 51-56. doi: 10.1109/TED.2021.3126267 [15] CHAUDHURI R, BADER S J, CHEN Z, et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells[J]. Science, 2019, 365(6460): 1454-1457. doi: 10.1126/science.aau8623 [16] VERZELLESI G, MORASSI L, MENEGHESSO G, et al. Influence of buffer carbon doping on pulse and AC behavior of insulated-gate field-plated power AlGaN /GaN HEMTs[J]. IEEE Electron Device Letters, 2014, 35(4): 443-445. doi: 10.1109/LED.2014.2304680 [17] BAHAT-TREIDEL E, HILT O, BRUNNER F, et al. Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement[J]. IEEE Transactions on Electron Devices, 2008, 55(12): 3354-3359. [18] KABOUCHE R, ABID I, PUSCHE R, et al. Low on-resistance and low trapping effects in 1200 V superlattice GaN-on-silicon heterostructures[J]. Physica Status Solidi Applied Research, 2020, 217(7): 1900687. doi: 10.1002/pssa.201900687 [19] KIM J G, CHO C, KIM E, et al. High breakdown voltage and low-current dispersion in AlGaN/GaN HEMTs with high-quality AlN buffer layer[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1513-1517. doi: 10.1109/TED.2021.3057000 [20] HICKMAN A L, CHAUDHURI R, BADER S J, et al. Next generation electronics on the ultrawide-bandgap aluminum nitride platform[J]. Semiconductor Science Technology, 2021, 36(4): 044001. doi: 10.1088/1361-6641/abe5fd [21] LI S, MA Y F, LU W H, et al. 1200V E-mode GaN monolithic integration platform on sapphire with ultra-thin buffer technology[C]//Proceedings of the International Electron Devices Meeting. New York: IEEE, 2023: 1-4. [22] ABID I, MEHTA J, CORDIER Y, et al. AlGaN channel high electron mobility transistors with regrown ohmic contacts[J]. Electronics, 2021, 10(6): 635. doi: 10.3390/electronics10060635 [23] FAN Y T, LIU X, ZHANG W H, et al. Monolithic heterogeneous integration of Si(100)/GaN CMOS inverters and normally-off GaN power devices for high switching frequency and high power applications[C]//Proceedings of the 36th International Symposium on Power Semiconductor Devices and ICs. New York: IEEE, 2024: 267-270. [24] THEN H W, RADOSAVLJEVIC M, BADER S, et al. DrGaN: An integrated CMOS driver-GaN power switch technology on 300 mm GaN-on-Si with E-mode GaN MOSHEMT and 3D monolithic Si PMOS[C]//Proceedings of the International Electron Devices Meeting. San Francisco: IEEE, 2023: 1-4. [25] HAHN H, REUTERS B, KOTZEA S, et al. First monolithic integration of GaN-based enhancement mode n-channel and p-channel heterostructure field effect transistors[C]//Proceedings of the 72nd Device Research Conference. California: IEEE, 2014: 259-260. [26] CHU R M, CAO Y, CHEN M, et al. An experimental demonstration of GaN CMOS technology[J]. IEEE Electron Device Letters, 2016, 37(3): 269-271. doi: 10.1109/LED.2016.2515103 [27] CHOWDHURY N, XIE Q Y, YUAN M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate[J]. IEEE Electron Device Letters, 2020, 41(6): 820-823. doi: 10.1109/LED.2020.2987003 [28] XIE Q Y, YUAN M Y, NIROULA J, et al. Highly scaled GaN complementary technology on a silicon substrate[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 2121-2128. doi: 10.1109/TED.2023.3247684 [29] ZHOU J G, DO H B, DE SOUZA M M. Impact of an underlying 2DEG on the performance of a p-Channel MOSFET in GaN[J]. ACS Applied Electronic Materials, 2023, 5(6): 3309-3315. doi: 10.1021/acsaelm.3c00350 [30] ZHOU J G, DO H B, DE SOUZA M M. A new back-to-back graded AlGaN barrier for complementary integration technique based on GaN/AlGaN/GaN platform[C]//Proceedings of the 7th IEEE Electron Devices Technology & Manufacturing Conference. Seoul: IEEE, 2023: 1-3. [31] SUN R Z, LIANG Y C, YEO Y C, et al. All-GaN power integration: Devices to functional subcircuits and converter ICs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 31-41. doi: 10.1109/JESTPE.2019.2946418 [32] SUN R Z, LAI J X, CHEN W J, et al. Crosstalk suppression in monolithic GaN devices based on inverted E-field decoupling[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1542-1549. doi: 10.1109/TED.2021.3059388 [33] ZHUANG C W, MING X, YE Z K, et al. An integrated low-power enhanced pull-up GaN driver using senseHEMT for reliable and fast short-circuit protection[C]//Proceedings of the 36th International Symposium on Power Semiconductor Devices and ICs. Bremen: IEEE, 2024: 351-354. [34] SUZUKI M, UENOYAMA T, YANASE A. First principles calculations of effective mass parameters of AlN and GaN[J]. Physical Review B, Condensed Matter, 1995, 52(11): 8132-8139. doi: 10.1103/PhysRevB.52.8132 [35] PONCÉ S, JENA D, GIUSTINO F, et al. Route to high hole mobility in GaN via reversal of crystal-field splitting[J]. Physical Review Letters, 2019, 123(9): 096602. doi: 10.1103/PhysRevLett.123.096602 [36] NAKAJIMA A, SUMIDA Y, DHYANI M H, et al. High density two-dimensional hole Gas induced by negative polarization at GaN/AlGaN heterointerface[J]. Applied Physics Express, 2010, 3(12): 121004. doi: 10.1143/APEX.3.121004 [37] NAKAJIMA A, KUBOTA S, TSUTSUI K, et al. GaN-based complementary metal–oxide–semiconductor inverter with normally off Pch and Nch MOSFETs fabricated using polarisation-induced holes and electron channels[J]. IET Power Electronics, 2018, 11(4): 689-694. [38] CHOWDHURY N, XIE Q Y, YUAN M Y, et al. First demonstration of a self-aligned GaN p-FET[C]//Proceedings of the IEEE International Electron Devices Meeting (IEDM). New: York, 2019: 4.6.1-4.6.4. [39] ZHENG Z Y, SONG W J, ZHANG L, et al. Monolithically integrated GaN ring oscillator based on high-performance complementary logic inverters[J]. IEEE Electron Device Letters, 2021, 42(1): 26-29. doi: 10.1109/LED.2020.3039264 [40] ZHENG Z Y, ZHANG L, SONG W J, et al. Threshold voltage instability of enhancement-mode GaN buried p-channel MOSFETs[J]. IEEE Electron Device Letters, 2021, 42(11): 1584-1587. doi: 10.1109/LED.2021.3114776 [41] ZHANG L, ZHENG Z Y, CHENG Y, et al. SiN/in-situ-GaON staggered gate stack on p-GaN for enhanced stability in buried-channel GaN p-FETs[C]//Proceedings of the IEEE International Electron Devices Meeting (IEDM). New York: IEEE, 2021: 5.3.1-5.3.4. [42] ZHU L Y, CHEN K L, MA Y, et al. High threshold voltage enhancement-mode GaN p-FET with Si-rich LPCVD SiN x gate insulator for high hole mobility[J]. Journal of Semiconductors, 2023, 44(8): 082801. doi: 10.1088/1674-4926/44/8/082801 [43] DU H H, LIU Z H, HAO L, et al. High-performance E-mode p-channel GaN FinFET on silicon substrate with high ION/IOFF and high threshold voltage[J]. IEEE Electron Device Letters, 2022, 43(5): 705-708. doi: 10.1109/LED.2022.3155152 [44] JIN H, JIANG Q M, HUANG S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage[J]. IEEE Electron Device Letters, 2022, 43(8): 1191-1194. doi: 10.1109/LED.2022.3184998 [45] WANG L, HUANG S, JIANG Q M, et al. High threshold voltage stability enhancement-mode GaN p-FETs fabricated with PEALD-AlN gate interfacial layer[J]. IEEE Electron Device Letters, 2024, 45(3): 320-323. doi: 10.1109/LED.2024.3354935 [46] CHEN K L, HUANG S T, WANG H C, et al. A novel E-mode GaN p-MISFET with hole compensation effect achieving high drain current and ultra-low subthreshold slope[C]//Proceedings of the 36thInternational Symposium on Power Semiconductor Devices and Ics (ISPSD). New York: IEEE, 2024: 315-318. [47] BADER S J, CHAUDHURI R, HICKMAN A, et al. GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current[C]//Proceedings of the IEEE International Electron Devices Meeting. New York: IEEE, 2019: 4.5.1-4.5.4. [48] WANG J, LU S, CAI W T, et al. Ohmic contact to p-type GaN enabled by post-growth diffusion of magnesium[J]. IEEE Electron Device Letters, 2022, 43(1): 150-153. doi: 10.1109/LED.2021.3131057 [49] ZHANG Y L, SUN Z W, WANG W S, et al. Low-resistance Ni/Ag contacts on GaN-based p-channel heterojunction field-effect transistor[J]. IEEE Transactions on Electron Devices, 2023, 70(1): 31-35. doi: 10.1109/TED.2022.3225367 [50] ZHENG Z Y, SONG W J, ZHANG L, et al. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform[J]. IEEE Electron Device Letters, 2020, 41(1): 26-29. doi: 10.1109/LED.2019.2954035 [51] YANG C, FU H Q, PERI P, et al. Enhancement-mode gate-recess-free GaN-based p-channel heterojunction field-effect transistor with ultra-low subthreshold swing[J]. IEEE Electron Device Letters, 2021, 42(8): 1128-1131. doi: 10.1109/LED.2021.3092040 [52] YIN Y D, LEE K B. High-performance enhancement-mode p-channel GaN MISFETs with steep subthreshold swing[J]. IEEE Electron Device Letters, 2022, 43(4): 533-536. doi: 10.1109/LED.2022.3152308 [53] LI T, ZHANG M, YU J J, et al. Development of enhancement-mode GaN p-FET with post-etch wet treatment on p-GaN gate HEMT Epi-wafer[J]. IEEE Transactions on Electron Devices, 2024, 71(4): 2361-2365. doi: 10.1109/TED.2024.3365676 [54] BADER S J, CHAUDHURI R, NOMOTO K, et al. Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas[J]. IEEE Electron Device Letters, 2018, 39(12): 1848-1851. doi: 10.1109/LED.2018.2874190 [55] RAJ A, KRISHNA A, HATUI N, et al. Demonstration of a GaN/AlGaN superlattice-based p-channel FinFET with high on-current[J]. IEEE Electron Device Letters, 2020, 41(2): 220-223. doi: 10.1109/LED.2019.2963428 [56] RAJ A, KRISHNA A, HATUI N, et al. GaN/AlGaN superlattice based E-mode p-channel MES-FinFET with regrown contacts and >50 mA/mm on-current[C]//Proceedings of the IEEE International Electron Devices Meeting (IEDM). New York: IEEE, 2021: 5.4.1-5.4.4.