Blind Estimation of Lower SNR Aperiodic DS Signals
-
摘要: 为解决低信噪比下非周期性直扩信号PN码序列的盲估计难题,提出了以两倍信息码元宽度为分段长度的分段矩阵特征分解法(SEVD)对PN码序列进行初步估计,然后对得到的各段估计序列进行拼接,再通过基于最优移位相加特性的信息码剥离算法得到原始PN码序列的盲估计方法,该方法采用并行处理以提高运算速度,并具有无需事先提取同步信息、能够消除“反码”现象的优点。仿真结果表明该方法能够在信噪比大于?17 dB条件下对扩频码码长为1 023的m序列的非周期性直扩信号做到无误码盲估计。Abstract: A blind estimation method for pseudo noise (PN) sequence estimation of aperiodic direct sequence spread spectrum (DS) signals under condition of lower signal noise ratio (SNR) is presented. The proposed method estimates the PN sequence with segmented matrix eigenvalue decomposition (SEVD) method whose segment length equals double information bits,and then shells off the random information bits from the estimated sequences to obtain the original PN sequence based on the optimal shift-and-add property. The method accelerates the computation speed by applying parallel computing without need of prior synchronization information,and it can sweep off the “code blurring” phenomena. Simulation results show that the aperiodic DS signal with m sequence period 1 023 can be estimated without any errors as long as the SNR is above ?17 dB.
-
Keywords:
- aperiodic /
- sblind estimation /
- direct sequence spread spectrum /
- hift-and-add
-
计量
- 文章访问数: 4892
- HTML全文浏览量: 130
- PDF下载量: 93