Abstract:
Intelligently optimal support vector machine (SVM) were introduced in electric utility boiler to improve short-term load forecasting accuracy and generalization ability. Wavelet transform is adopted to filter noise in training and testing data set. Kernel principle component analysis is used in feature selection. Then quantum-behaved particle swarm algorithm is chosen to determinate optimal hyper-parameter in SVM. This optimal algorithm has been tested on power plant and the results show that the prediction can get higher precision and convergence speed.