采用图像滤波的多特征JPEG盲检测

Multi-Feature-Based Blind Steganalysis for JPEG Images Using Image Filter

  • 摘要: 提出了一种采用锐化滤波的多种特征相结合的JPEG盲检测算法。通过扩展DCT系数的马尔可夫矩阵提取块内相关性和块间相关性;引入锐化滤波来增强图像的边缘,加强了分块特性度量的效果;并使用Jessica的“校准”技术来估计原始图像,得到两个图像特征向量之差作为分类特征,提高了特征的敏感度;最后运用支持向量机进行训练和分类。使用大量图像对该算法的性能进行测试和比较,结果表明该算法在低嵌入率下优于其他算法。

     

    Abstract: A new multi-feature-based blind steganalysis scheme for JPEG images using sharpening filter is presented. In this scheme, the Markov matrix is extended to distill the intra-block correlations and the inter-block correlations; the sharpening filter is adopted to enhance the image edge; the Jessica's calibration technique is used to estimate original image and construct feature vectors; and the support vector machine classifier is applied to get results at last. Many images are tested and compared. Experimental results show that our method do better than others at the low embedding rate.

     

/

返回文章
返回