Web舆情的长期趋势预测方法

Prediction Model for Long-Term Development Trend of Web Sentiment

  • 摘要: 针对传统预测方法无法有效预测Web舆情的长期趋势中拐点的不足,提出一种长期趋势预测方法。该方法首先通过周期分析和层次聚类为每类已发生舆情事件的发展趋势建立类模型库,然后通过对待预测舆情事件已知发展趋势进行自适应变换后,应用最小二乘法从相应的类模型库中选取均方误差和最小的模型来预测该事件的未来发展趋势。实验证明,与传统方法相比该方法在预测舆情事件发展的长期趋势时有较高的关联度,能有效预测长期趋势中的拐点。

     

    Abstract: In this paper we present a novel approach for long-term prediction of the development trend of Web sentiment. For each class of social events, the class model library of the development trend of Web sentiment is established by cycle analysis and hierarchical clustering. Then the adaptive transform is applied to the already known development trend of a new social event, and the min-sum of MSE from the library is selected to predict the future development trend of web sentiment. Experiments show that, compared with the traditional methods, the approach presented in this paper yields a higher correlation in predicting the long-term development trend of web sentiment, and can predict the turning points of the development trend more effectively.

     

/

返回文章
返回