异常检测中支持向量机最优模型选择方法

Support Vector Machine Based Optimal Model Selection Method in Anomaly Detection

  • 摘要: 为了构建一个具有良好的学习性能和推广能力的异常检测分类器,在结构风险最小(SRM)原则下讨论了基于支持向量机(SVM)的异常检测分类器的设计准则,提出了SVM分类器模型及其参数快速选择和评估方法,并给出了异常检测分类器训练步骤。针对KDD’99网络入侵检测数据集,实验结果表明,该方法能够有效地缩短入侵检测分类模型建立时间,而且建立的入侵检测分类器检测精度较高。

     

    Abstract: In order to construct an anomaly detection classifier which has good learning and generalization ability, under the structural risk minimization (SRM) principle,the design rules of a support vector machines (SVMs) based anomaly detection classifier is discussed. The model and its parameters selection and estimation method of a SVM classifier are proposed. The training steps of a SVM anomaly detection classifier are given. Experiments on KDD’99 network intrusion detection dataset indicate that the proposed methods can speed up the process of constructing an intrusion detection classifier and the classification accuracy is higher.

     

/

返回文章
返回