基于双适应度遗传退火的云任务调度算法
Task Scheduling Algorithm Based on Dual Fitness Genetic Annealing Algorithm in Cloud Computing Environment
-
摘要: 云计算是当前计算机领域研究的热点,其中云任务调度算法性能的好坏直接影响到云计算平台的整体性能.为了满足云计算平台庞大用户群的不同服务需求,针对现有的云计算任务调度算法提出一种双适应度遗传退火任务调度算法(DFG2A),基于该任务调度算法的任务调度策略能够有效平衡用户对任务各项属性的需求,提高云计算平台的用户满意度.实验结果证明了该算法能兼顾云计算平台总任务执行时间和用户需求,是云计算环境下一种有效的任务调度算法.Abstract: Cloud computing is a hot spot in computer research field, in which the performance of task scheduling algorithm directly affects total performance of cloud computing systems. For satisfying users' different service requirements, a dual fitness genetic annealing algorithm (DFG2A) is presented. Task scheduling scheme based on this algorithm can balance different attribute requirements for each task, and improve customer satisfaction index of platform. The simulation results show that DFG2A can achieve a balance between task running time and user requirements.