超声弹性成像零相位估计算法并行化研究

彭博, 谌勇, 刘东权

彭博, 谌勇, 刘东权. 超声弹性成像零相位估计算法并行化研究[J]. 电子科技大学学报, 2014, 43(4): 618-623. DOI: 10.3969/j.issn.1001-0548.2014.04.026
引用本文: 彭博, 谌勇, 刘东权. 超声弹性成像零相位估计算法并行化研究[J]. 电子科技大学学报, 2014, 43(4): 618-623. DOI: 10.3969/j.issn.1001-0548.2014.04.026
PENG Bo, CHEN Yong, LIU Dong-quan. Investigation of Parallel Computation for Phase Zero Estimation in Ultrasound Elastography[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(4): 618-623. DOI: 10.3969/j.issn.1001-0548.2014.04.026
Citation: PENG Bo, CHEN Yong, LIU Dong-quan. Investigation of Parallel Computation for Phase Zero Estimation in Ultrasound Elastography[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(4): 618-623. DOI: 10.3969/j.issn.1001-0548.2014.04.026

超声弹性成像零相位估计算法并行化研究

基金项目: 

四川省科技支撑项目(2013GZX0147);四川省科技创新苗子工程培育项目

详细信息
    作者简介:

    彭博(1980-),男,博士生,主要从事分布式与高性能并行计算、医学信号与图像处理方面的研究.

  • 中图分类号: R318

Investigation of Parallel Computation for Phase Zero Estimation in Ultrasound Elastography

  • 摘要: 研究超声弹性成像零相位估计算法的并行化计算问题。针对标准的零相位估计算法不易并行实现的特性,提出零相位估计算法的并行计算框架。首先通过互相关算法计算初步的位移并作为零相位估计算法引导位移,然后再使用二维零相位估计算法计算最终每一个估计点位移。仿真结果显示,该并行计算框架在生成的弹性图像的信噪比和对比度噪声比上能获得与标准方法非常接近的性能评价,同时与标准方法的CPU实现相比,该方法的GPU实现有效地提高了零相位估计算法的计算速度,其加速比可达7倍。研究表明,该算法框架不仅能有效地并行计算,同时能够保证得到高质量的弹性图。
    Abstract: This paper presents a parallel phase zero estimation framework to compute the axial tissue displacements. The framework includes two independent steps: coarse motion estimates and motion estimate refinement. For two frames of baseband signals, coarse motion estimates are first computed by using cross correlation function. The obtained motion estimates are used as initial guess for phase zero estimation. Then, the 2D phase zero estimation method is employed to refine the motion estimates. The experimental results illustrated that the two-step parallel estimation strategy is capable of generating fine motion estimation and is also suitable for parallel computation. Compared with the standard phase zero estimation method based on CPU, the proposed parallel estimation framework based on GPU achieved 7 times speed-up. In conclusion, the proposed parallel estimation framework not only obtains the fine elastogram, but also improves the computational efficiency.
计量
  • 文章访问数:  4575
  • HTML全文浏览量:  132
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-11-19
  • 刊出日期:  2014-08-14

目录

    /

    返回文章
    返回