Abstract:
Micro-blog user recommendation has great significance and value for improving the user experience and promoting the long-term development of the social network. In this paper, multiple features reflecting the correlation between micro-blog users are extracted. Combining the user features and ranks scores for potential users, top-n potential users are recommended for the target user. The experimental results based on the dataset gained from Sina Micro-Blog shows that the proposed method is feasible and effective, and it can provide personalized user recommendation with high performance for micro-blog users.