Study on Confocal Cylindrical Quasi-Optical Cavity Gyrotron
-
摘要: 推导了共焦柱面准光波导的传输方程,对采用共焦柱面准光腔作为谐振腔的准光腔回旋管进行了理论研究,数值计算结果与实验结果相吻合。结果证明,共焦柱面准光波导的模式间隔度大,通过调节镜面宽度可调节腔内各模式的衍射损耗,使腔体内仅有TE0n模式可稳定存在,进而提高波导内工作模式的分割度。利用共焦柱面准光谐振腔替代传统回旋管的圆柱波导谐振腔,可大大降低回旋管中的模式竞争问题。在该结构中,n=1, 3, 5…模式可有效地实现二次谐波工作。
-
[1] NUSINOVICH G S, THUMM M, PETELIN M. The gyrotron at 50: Historical overview[J]. J Infrared Milli Terahertz Waves, 2014, 35(4): 325-381. [2] BOOSKE J H, DOBBS R J, JOYE C D, et al. Vacuum electronics high power terahertz sources[J]. IEEE Trans Terahertz Sci Tech, 2011, 1(1): 54-75. [3] GLYAVIN M Y, LUCHININ A G, GOLUBIATNIKOV G Y. Generation of 1.5 kW, 1 THz coherent radiation from a gyrotron[J]. Phys Rev Lett, 2008, 100(1): 015101. [4] NOTAKE T, SAITO T, TATEMATSU Y, et al. Development of a novel high power sub-thz second harmonic gyrotron[J]. Phys Rev Lett, 2009, 103(22): 225002. [5] FU W J, GUAN X T, CHEN C, et al. Design and experiment of a 220/420 GHz gyrotron for nondestructive evaluation[J]. IEEE Trans Elec Dev, 2014, 61(7): 2531-2537. [6] THUMM M. State-of-the-art of high power gyro-devices and free electron masers update 2013[M]. Karlsruhe, Germany: KIT Scientific Publishing, 2014. [7] NANNI E A, LEWIS S M, SHAPIRO M A, et al. Photonic-band-gap traveling-wave gyrotron amplifier[J]. Phys Rev Lett, 2013, 111(23): 235101. [8] HU W, SHAPIRO M A, KREISCHER K E, et al. 140 GHz gyrotron experiments based on a confocal cavity[J]. IEEE Trans Plasma Sci, 1998, 26(3): 366-374. [9] SIRIGIRI J R, SHAPIRO M A, TEMKIN R J. High-power 140 GHz quasioptical gyrotron traveling-wave amplifier[J]. Phys Rev Lett, 2003, 90(25): 258302 [10] QUIMBY R S. Photonics and lasers: an introduction[M]. Hoboken, USA: John Wiley & Sons Inc, 2006. [11] ZHANG K Q, LI D J. Electromagnetic theory for microwaves and optoelectronics[M]. 2nd Edition. New York, USA: Springer-Verlag, 2008. [12] WEINSTEIN L A. Open resonators and open waveguide [M]. Boulder, USA: The Golem Press, 1969.
点击查看大图
计量
- 文章访问数: 5077
- HTML全文浏览量: 138
- PDF下载量: 150
- 被引次数: 0