Temporal Autocorrelation Properties for Non-Stationary 3D Multipath Scattering
-
摘要: 结合航空移动通信环境的三维非稳态特征,推导了立体空域内散射体相对于收发节点随机运动散射场景的时域自相关函数的数学表达式。该表达式为有限区间内的高维积分,结合蒙特卡洛高维积分法和射线跟踪法验证了该表达式的正确性。数值结果表明:节点运动速度、散射体速度和散射体数量越大,相应的时域自相关函数衰减越快。该表达式和求解办法具有较强的推广性,通过降维可等效为二维散射场景,令散射体相对于收发节点静止可等效为稳态散射场景。相关结论可为下一代航空移动通信宽带传输体制的相干时间与相干距离的确定提供理论支撑。
-
[1] MEDINA D, HOFFMANN F, AYAZ S, et al. Feasibility of an aeronautical mobile ad hoc network over the north atlantic corridor[C]//5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. San Francisco, CA: IEEE Press, 2008: 109-116. [2] NEJI N, LACERDA R D, AZOULAY A, et al. Coexistence between the future aeronautical system for continental communication L-DACS and the distance measuring equipment DME[C]//IEEE First AESS European Conference on Satellite Telecommunications. Rome: IEEE Press, 2012: 1-7. [3] TAKIZAWA K, ONO F, TSUJI H, et al. Air-to-air radio channel measurement at 2.3 GHz for unmanned aircraft services[C]//16th International Symposium on Wireless Personal Multimedia Communications. Atlantic City, NJ: IEEE Press, 2013: 1-5. [4] ZHOU Qi, GU Wen-zhe, LI Jing-lin, et al. A topology aware routing protocol based ADS-B system for aeronautical ad hoc networks[C]//8th International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai, China: IEEE Press, 2012: 1-4. [5] LEI Lei, WANG Dan, ZHOU Liang, et al. Link availability estimation based reliable routing for aeronautical ad hoc networks[J]. Ad Hoc Networks, 2014, 20: 53-63. [6] FISTAS N. Future aeronautical communication system-FCI [C]//Integrated Communications, Navigation and Surveillance Conference (ICNS). [s.l.]: [s.n.], 2009: 13. [7] 刘竹林, 高清. 被动式电离层信道参量实时探测系统[J]. 电子科技大学学报, 1991, 20(2): 133-137. LIU Zhu-lin, GAO Qing. Real-time detecting parameters system for passive ionospheric channel[J]. Journal of University of Electronic Science and Technology of China, 1991, 20(2): 133-137. [8] 李忻, 聂在平, 伍裕江. 移动性对MIMO无线信道性能的影响[J]. 电子科技大学学报, 2004, 33(5): 503-506. LI Xin, NIE Zai-ping, WU Yu-jiang. Impact of mobility on performancesof MIMO wireless channels[J]. Journal of University of Electronic Science and Technology of China, 2004, 33(5): 503-506. [9] CLARKE R H. A statistical theory of mxobile-radio reception [J]. Bell Systems Technologies. 1968, 47(6): 957-1000. [10] AULIN T. A modified model for the fading signal at a mobile radio channel[J]. IEEE Transactions on Vehicular Technology, 1979, 28(3): 182-203. [11] SAKHAEE E, JAMALIPOUR A. The global in-flight internet[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(9): 1748-1757. [12] BORHANI A, PTZOLD M. Modeling of vehicle-to-vehicle channels in the presence of moving scatterers[C]//IEEE Vehicular Technology Conference. Quebec City: IEEE Press, 2012: 1-5. [13] BORHANI A, PTZOLD M. Correlation and spectral properties of vehicle-to-vehicle channels in the presence of moving scatterers[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4228-4239. [14] ZAJIC A G, STÜBER G L. A 3-D simulation models for wideband MIMO mobile-to-mobile channels[C]//IEEE Military Communications Conference. Orlando, FL, USA: IEEE Press, 2007: 1-5. [15] ZAJIC A G, STÜBER G L. Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2042-2054. [16] SAMARASINGHE P, LAMAHEWA T, ABHAYAPALA T, et al. 3D mobile-to-mobile wireless channel model[C]// Australian Communications Theory Workshop. Canberra, ACT: IEEE Press, 2010: 30-34. [17] WU T M, TSAI T H. Novel 3-D mobile-to-mobile wideband channel model[C]//IEEE Antennas and Propagation Society International Symposium. Toronto, Canada: IEEE Press, 2010: 1-4. [18] RIAZ M, NAWAZ S J, KHAN N M. 3D ellipsoidal model for mobile-to-mobile radio propagation environments[J]. Wireless Personal Communications, 2013, 72: 2465-2479. [19] WALTER M, GLIGOREVIC S, DETERT T, et al. UHF/VHF air-to-air propagation measurements[C]// Proceedings of the Fourth European Conference on Antennas and Propagation(EuCAP). Barcelona, Spain: IEEE Press, 2010: 1-5. [20] WALTER M, SCHNELL M. Statistical distribution of line-of-sight and reflected path in the aeronautical channel[C]//IEEE/AIAA 30th Digital Avionics Systems Conference. Seattle, WA: IEEE Press, 2011. [21] PAN Q, LIU S, XU M, et al. Finite-state markov model for the aeronautical channel[C]//5th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing, China: IEEE Press, 2009: 1-4. [22] PATZOLD M. Mobile radio channels[M]. 2nd ed. Chichester: John Wiley & Sons, 2011. [23] CLARKE R H. 3-D mobile radio channel statistics[J]. IEEE Transactions on Vehicular Technology, 1997, 46(3): 798-799. [24] 张更新, 张杭. 卫星移动通信系统[M]. 北京: 人民邮电出版社, 2001. ZHANG Geng-xin, ZHANG Hang. Mobile satellite communication system[M]. Beijing: Posts and Telecom Press, 2001. [25] 庄铭杰, 郭东辉. 移动通信中无线信道特性的研究[J]. 电讯技术, 2004(5): 35-40. ZHUANG MING-jie, GUO Dong-hui. Study on the characteristic of wireless channels in mobile communication [J]. Telecommunication Engineering, 2004(5): 35-40.
点击查看大图
计量
- 文章访问数: 4995
- HTML全文浏览量: 124
- PDF下载量: 357
- 被引次数: 0