Research of Secret Reconstruction Based on Coding Theory
-
摘要: 当前大多基于编码实现的(k,n)门限秘密分享方案在秘密重构时均假定只存在k个份额,忽略了秘密重构时可用份额数量多于门限值k的情况。而实验证明,多余的份额如果合理利用可以极大地降低秘密重构的运算量。在基于秘密分享的实用系统运行过程中,特别是网络数据传输或分布式存储系统中,可用份额数量大于门限值k的情况又是经常出现的。针对这一问题,该文提出了一种新的秘密重构方法,该方法可以有效利用秘密重构时所有的可用份额,且计算效率与当前主流方法相比有较大的提升。
-
[1] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613. [2] BLAKLEY G. Safeguarding cryptographic keys[C]//Proceedings of the National Computer Conference. New York, USA: Wiley, 1979. [3] ASMUTH C, BLOOM J. A modular approach to key safeguarding[J]. IEEE Transactions on Information Theory, 1983, 29(2): 208-210. [4] CHEN H, LING S, XIANG C P. Access sturctures of elliptic secret sharing schemes[J]. IEEE Transaction on Information Theory, 2008, 54(2): 850-852. [5] YANG Y G, WEN Q Y, ZHU F C. An efficient two-step quantum key distribution protocol with orthogonal product states[J]. Chinese Physics, 2007, 16(4): 910-914. [6] MCELIECE R J, SARWATE D V. On sharing secrets and reed-solomon codes[J]. Communications of the ACM, 1981(9): 583-584. [7] LI Bai. A reliable (k,n) image secret sharing seheme. dependable, autonomic and secure computing[C]//2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing. Indianapolis, USA: Hans-Andrea Loeliger, 2006. [8] 唐聃. 图像秘密分享技术研究[D]. 北京: 中国科学院, 2010. TANG Dan. Research on secret image sharing scheme[D]. Beijing: Chinese Academy of Sciences, 2010. [9] THIEN C C, LIN J C. Secret image sharing[J]. Computer & Graphic, 2002, 26(5): 765-770. [10] MOL J J D, POUWELSE J A, EPEMA D H J, et al. Free-riding, fairness, and firewalls in P2P file-sharing in peer-to-peer computing[C]//Eighth International Conference on P2P. Aachen, Germany: [s.n.], 2008. [11] LEIN H, LIN Chang-lu. Asynchronous secret reconstruction and its application to the threshold cryptography[J]. International Journal of Communications, Network and System Sciences, 2014, 7(1): 22-29. [12] MASSEY J L. Minimal codewords and secret sharing[C]//Proceedings of the Joint Swedish-Russian International Workshop on Information Theory. Sweden: Willy, 1993. [13] BLAKLEY G R, KABATIANSKI G A. Ideal perfect threshold schemes and MDS codes[C]//Proceedings of the International Symposium on Information Theory. Washington, USA: Springer, 1995. [14] 王晓京, 方佳嘉, 蔡红亮, 等. 视图的秘密分享及其代 数编码方法[J]. 计算机应用, 2012, 32(3): 669-678. WANG Xiao-jing, FANG Jia-jia, CAI Hong-liang, et al. Secret image sharing and its algebraic coding method[J]. Journal of Computer Applications, 2012, 32(3): 669-678. [15] 王一丁. 音频秘密分享技术研究[D]. 北京: 中国科学院, 2011. WANG Yi-ding. Research on secret audio sharing scheme[D]. Beijing: Chinese Academy of Sciences, 2011. [16] 方佳嘉. 感官信息秘密分享技术及其应用研究[D]. 北京: 中国科学院, 2012. FANG Jia-jia. Research on sensory information secret sharing and its applications[D]. Beijing: Chinese Academy of Sciences, 2012. [17] 唐聃, 王晓京. 基于编码理论的图像秘密分享技术研究[J]. 计算机应用与软件, 2013, 30(9): 141-146. TANG Dan, WANG Xiao-jing. Research on secret sharing of image based on coding theory[J]. Computer Applications and Software, 2013, 30(9): 141-146.
点击查看大图
计量
- 文章访问数: 5133
- HTML全文浏览量: 135
- PDF下载量: 248
- 被引次数: 0