二维Kleinberg网络上疾病传播的最优局部控制策略

Optimal Local Control Strategy for the Spreading of Epidemic in Two-Dimensional Kleinberg Networks

  • 摘要: 研究二维Kleinberg网络上的疾病传播及最优控制问题。基于Manhattan距离提出了一种局部的控制策略抑制疾病在Kleinberg网络上的传播,并进一步研究该策略对系统总的代价(定义为最终感染比例和治愈人数比例之和)的影响。通过研究发现,当Kleinberg网络中长程边数量和疾病传播率在一定范围内时,会存在一个最优控制半径,使系统代价最小。当控制半径小于最优控制半径,局部控制策略不能有效地抑制疾病的传播,导致很多节点被感染;当控制半径大于最优控制半径,虽然疾病的传播范围被有效地控制,但是会花费更多的代价用于控制疾病传播。并且最优控制半径会随着疾病的传播率以及刻画网络的参数改变而发生变化。

     

    Abstract: In this paper we study the spreading of epidemic and its optimal control strategy in two-dimensional Kleinberg networks. We propose a local control strategy based on the Manhattan distance to inhibit the spreading of epidemic in Kleinberg networks, and then study the effect of this strategy on the cost function of total system (defined as the sum of the density of infection and the density of cured individuals). We find that, when the number of long-distance edges and the transmission rate are in a certain range, there will be an optimal control radius that makes the cost function of total system be minimum. When the control radius is smaller than the optimal radius, the epidemic cannot be effectively controlled, leading to the outbreak of epidemic. However, when the control radius is larger than the optimal radius, the cost of controlling is very high though the epidemic can be controlled. Meanwhile, we also show that the optimal control radius is influenced by the transmission rate and the parameter depicting the Kleinberg network.

     

/

返回文章
返回