-
随着5G通信时代的到来和智能化消费类电子产品的普及,无线通信传输速率须满足Gbit/s的高速率、大容量信息传送。例如多Gbit/s的点对点通信、超大容量的无线局域组网(WLANs),无压缩高清视频的无线传输以及智能汽车和可穿戴设备等。已有的无线射频频谱因频带宽度较窄,且频谱资源利用率接近饱和而难以支持Gbit/s的传输速率。依香农定理,数据传输速率与频带宽度和信噪比(signal to noise ratio, SNR)成正比,在信噪比提升有限的条件下增大频带带宽能提高信息的传输速率。在毫米波频段,尤其是60 GHz频谱资源具有高达7 GHz的免授权频带宽度,从而为Gbit/s信息传输提供频带支持。美国联邦通信委员会于1995年免费开放57~64GHz频谱资源,中国、欧盟、日本、韩国和澳大利亚也相继免授权开放60 GHz频谱。为了进一步提高无线通信的传输质量、传输速率和频谱利用率以及满足5G通信的需求,多输入多输出(multiple input multiple output, MIMO)技术将被广泛应用。因此,应用于波束赋形的多通道相控阵收发系统变得甚为关键。
CMOS工艺因具有经济成本低、高集成度以及可与数字电路形成片上系统(system on a chip, SoC)等优势,在消费类电子产品中占据主导地位。在摩尔定律的驱动下,当前主流CMOS工艺的截止频率ft和最大振荡频率fmax均已超过100 GHz,先进的28 nm CMOS工艺的ft/fmax已达到349/265[1]。因此,基于先进的CMOS工艺可进行毫米波集成电路的设计并大规模应用于消费类电子产品的开发。在过去的十年中,CMOS毫米波集成电路吸引了学术界和工业界的极大关注,并有大量研究工作被报道。
本文主要从器件模型、电路模块和系统设计3个方面介绍电子科技大学康凯教授团队相关的研究工作。
CMOS Multi-Channel Chips
-
摘要: 针对互补金属氧化物半导体(CMOS)工艺在毫米波集成电路设计中存在的诸多挑战,分别从毫米波器件建模和天线设计,毫米波电路模块设计和多通道收发系统设计方面进行介绍,以克服相应挑战。该文研究和建立了毫米波频段片上互连线,耦合电感和六端口M:N变压器的等效模型和太赫兹有源器件模型,并对毫米波片上天线进行设计;介绍了基于噪声抵消的低噪声放大器电路和基于全对称平衡分布式有源变压器的功率放大器电路、毫米波移相器电路以及集成片上天线的CMOS 60 GHz接收机和多通道相控阵收发系统。Abstract: In order to overcome a number of challenges in CMOS millimeter-wave integrated circuit design, the millimeter-wave device modeling, antenna design, circuit block, and multi-channel transceiver system are introduced in this paper. The equivalent-circuit models of millimeter-wave on-chip interconnected lines, multiple-coupled inductors, six-port M:N transformers, and the model of terahertz active device are studied and proposed, respectively. Moreover, a low noise amplifier with noise canceling and a power amplifier with a fully symmetrical distributed active transformer are introduced in this paper. Furthermore, the CMOS 60 GHz receiver with on-chip antenna and the multi-channel phase array transceiver are described, respectively.
-
Key words:
- CMOS /
- millimeter-wave /
- multi-channel /
- passive device /
- phase shifter /
- power amplifier /
- receiver
-
图 3 两种传输线模型的测试结果对比[2]
图 4 六端口M:N变压器模型[5]
图 5 片上多耦合电感模型[6]
图 8 Q波段噪声抵消低噪声放大器原理图[10]
图 9 Q波段噪声抵消低噪声放大器芯片图和测试数据[10]
图 10 60 GHz变压器耦合功率放大器原理图[12]
图 11 60 GHz变压器耦合功率放大器测试结果[12]
图 12 V波段移相器原理图[13]
图 13 V波段移相器测试数据[13]
图 14 60 GHz OOK接收机架构图[15]
图 15 集成片上天线的60 GHz OOK接收机芯片照片[15]
图 16 OOK信号解调后测试眼图[15]
-
[1] YANG M T, LIAO K, WELSTAND R, et al. RF and mixed-signal performances of a low cost 28 nm low-power CMOS technology for wireless system-on-chip applications[C]//2011 IEEE Symposium on VLSI Technology. Kyoto:IEEE, 2011. [2] KANG Kai, NAN Lan, SHI Jing-lin. A wideband scalable and SPICE-compatible model for on-chip interconnects up to 110 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(4):942-951. doi: 10.1109/TMTT.2008.919374 [3] ZHU Yu-kun, KANG Kai, WU Yun-qiu, et al. An equivalent circuit model with current return path effects for on-chip interconnects up to 80 GHz[J]. IEEE Transactions on Components, Packaging, and Manufacture Techniques, 2015, 5(9):1320-1330. doi: 10.1109/TCPMT.2015.2448572 [4] GAO Zong-zhi, SONG Jia-ming, KANG Kai. Analysis and modeling of CMOS millimeter-wave M:N six-port transformers[C]//2014 IEEE International Wireless Symposium. Xi'an:IEEE, 2014. [5] GAO Zong-zhi, KANG Kai, ZHAO Chen-xi, et al. A broadband and equivalent-circuit model for millimeter-wave on-chip M:N six-port transformers and baluns[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(10):3109-3121. doi: 10.1109/TMTT.2015.2466549 [6] GAO Zong-zhi, WU Y, KANG Kai. An improved equivalent circuit model based on the CMOS on-chip multiple coupled inductors from DC to millimeter-wave region[C]//2015 IEEE International Microwave Symposium. Phoenix:IEEE, 2015. [7] GAO Zong-zhi, KANG Kai, JIANG Zheng-dong, et al. Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region[J]. IEEE Transactions on Electron Devices, 2015, 62(12):3957-3964. doi: 10.1109/TED.2015.2488840 [8] KANG Kai, ZONG Zhi-rui, GAO Zong-zhi, et al. Characterization and modeling of multiple coupled inductors based on on-chip four-port measurement[J]. IEEE Transactions on Components and Packaging Technologies, 2014, 4(10):1696-1704. http://cn.bing.com/academic/profile?id=2322042735&encoded=0&v=paper_preview&mkt=zh-cn [9] BRUCCOLERI F, KLUMPERINK E A M, NAUTA B. Noise cancelling in wideband CMOS LNAs[C]//2002 IEEE International Conference on Solid-State Circuits. San Francisco:IEEE, 2002. http://cn.bing.com/academic/profile?id=2130073667&encoded=0&v=paper_preview&mkt=zh-cn [10] YI Kai, ZHENG Qing-you, KANG Kai. A Q-band CMOS LNA with noise cancellation[C]//2014 IEEE International Wireless Symposium. Xi'an:IEEE, 2014. [11] CHOWDHURY D, REYNAERT P, NIKNEJAD A M. A 60 GHz 1 V 12.3 dBm transformer-coupled wideband PA in 90 nm CMOS[C]//2008 IEEE International Conference on Solid-State Circuits. San Francisco:IEEE, 2008. [12] GUO Kai-zhe, HUANG Peng, KANG Kai. A 60-GHz 21 dBm power amplifier with a fully symmetrical 8-waytransformer power combiner in 90 nm CMOS[C]//2014 IEEE International Microwave Symposium. Tampa:IEEE, 2014. [13] YU Yi-ming, ZHAO Chen-xi, KANG Kai. A 60-GHz vector summing phase shifter with digital tunable current-splitting and current-reuse techniques in 90 nm CMOS[C]//2015 IEEE International Microwave Symposium. Phoenix:IEEE, 2015. [14] YU Yi-ming, KANG Kai, ZHAO Chen-xi, et al. A 60 GHz 19.8 mW current-reuse active phase shifter with tunable current-splitting technique in 90 nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(5):1572-1584. doi: 10.1109/TMTT.2016.2544306 [15] KANG Kai, LIN Fu-jiang, PHAM D D, et al. A 60 GHz OOK receiver with an on-chip antenna in 90 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2010, 45(9):1720-1731. doi: 10.1109/JSSC.2010.2053095