基于ADMM的分布式功率分配和接入控制联合优化算法

Distributed Method for Joint Power Allocation and Admission Control Based on ADMM Framework

  • 摘要: 传统网络节能问题在给定的服务质量(QoS)限制下实现传输功耗最小化。在此基础上引入接入控制,通过联合优化接入用户和发射功率进一步实现网络节能。当网络无法满足所有用户的QoS要求时,接入控制使网络服务尽可能多的用户。它还能对用户进行分类和挑选,以较低功耗代价满足接入用户的QoS条件,提高传输功效。在将原问题转换成一个近似的凸稀疏优化问题后,利用交错乘子法(ADMM)对其进行分布式迭代求解。该算法的每一步都具有闭合解,因此运算量很低。计算机仿真验证了该算法的正确性和有效性。

     

    Abstract: The traditional green networks are usually achieved by minimizing the transmit power under some quality of service (QoS) constraints. In this paper, admission control is integrated with power allocation to pursue further performance improvement in green communication. This technique enables the network to serve as many users as possible when the network cannot guarantee all the users' QoS requirements. Moreover, it classifies the users and picks out a subset of admissible users whose QoS constraints can be easily satisfied with relatively low power consumption; thus the power efficiency is improved. After approximating the original joint power and admission control problem by a convex sparse optimization problem, an efficient distributed algorithm is developed for the approximated problem by fitting it into the alternating direction method of multipliers (ADMM) framework. Specifically, each iteration of ADMM can be computed in closed form, thus giving it very low complexity. The effectiveness of the proposed algorithm is validated by a series of numerical simulations.

     

/

返回文章
返回