-
D2D通信允许终端用户之间通过复用蜂窝小区频谱直接进行短距离通信[1],具有提高频谱利用率、降低发射功率以及增强网络覆盖等诸多优点,目前已引起广泛关注。文献[2-3]中指出,采用网络编码技术同样能提高无线蜂窝网络的频谱效率,提高无线传播传输的可靠性。然而,D2D用户与蜂窝用户共享无线频谱的同时,不可避免地两者之间存在相互干扰[4-6]。当D2D用户复用蜂窝下行链路频谱,D2D通信用户所处的小区位置对D2D用户的发送功率影响不大,而复用上行链路频谱要比复用下行链路频谱敏感得多。考虑D2D用户复用频谱资源较为丰富的蜂窝下行链路[7],此时D2D发送端会对蜂窝用户产生干扰,同时基站对D2D接收端也会产生干扰。消除蜂窝网络中D2D通信与蜂窝通信之间的干扰,已经成为D2D通信研究中的热点问题。
现有文献主要从资源管理和功率控制的角度来考虑避免D2D通信与蜂窝通信之间的干扰。文献[8]把D2D共享蜂窝小区无线资源分配问题归结为混合整数非线性规划问题,通过遍历小区资源找到满足最大吞吐量的复用资源,时间开销比较大,在计算复杂度上还有待改进。文献[9]基于小区位置管理分配离D2D终端远的蜂窝用户资源给D2D通信使用,通过计算得到蜂窝用户的抗干扰程度和D2D用户对蜂窝用户的干扰情况。文献[10]基于信道干扰值计算,尽量给D2D通信分配受干扰较小的和抗干扰程度高的用户资源,通过资源分配有效控制干扰。
文献[11-13]通过功率控制来减少D2D用户和蜂窝用户之间的干扰,该方法基于所有用户的信干噪比(signal to interference plus noise ratio,SINR)统计提出了一种D2D通信简单功率控制方案,降低了蜂窝用户和D2D用户之间的干扰,但是该方案限制了小区的传输速率,在通信业务量较大时,一定程度上限制了D2D通信的优势。文献[14]进一步提出了一种D2D通信系统的功率控制方案,通过基站控制D2D发射端的发射功率,使得D2D用户与蜂窝用户之间的干扰控制在一个可接受的水平。
无论是资源管理还是功率控制,在避免D2D通信与蜂窝通信之间干扰的过程中,都限定了D2D通信和蜂窝通信的通信范围,限制了D2D通信在LTE-A中的进一步推广。为此,本文提出一种基于复数域网络编码的D2D传输方案,将基站和D2D发送端作为两个信源,蜂窝用户作为中继节点,在该蜂窝中继节点上采用复数域网络编码并将复数域编码信号转发给D2D接收端,D2D接收端采用最大似然多用户检测恢复出D2D信号,利用蜂窝干扰实现D2D通信。理论分析与实验仿真表明,基于复数域网络编码的D2D传输方案较传统的D2D传输方案,可获得更高的系统可达速率,进一步降低D2D接收端的符号错误概率(symbol error probability,SEP)。
-
传统的D2D通信模型如图 1所示,D1与D2作为D2D通信终端建立D2D通信连接。D1与D2进行D2D通信时,D1和D2首先向基站发送D2D通信建立请求信令。若D2D通信请求成功,基站通过控制链路广播请求成功信令。接收到信令后,D2D发送端D1与接收端D2之间建立数据链路,D1通过该数据链路向D2直接发送D2D信号,实现D2D通信。D1通过D2D数据链路向D2直接发送数据,不经过基站的转发,减小了传输开销,提高了传输效率。
考虑实际蜂窝网络同时存在蜂窝通信和D2D通信,图 2给出了蜂窝通信和D2D通信具体的信息传输过程。基站BS通过蜂窝下行链路向蜂窝用户UE发送蜂窝信号,同时D2D发送端D1复用蜂窝下行链路频谱向D2D接收端D2发送信号。蜂窝通信与D2D通信共用同一蜂窝下行链路频谱,引起蜂窝通信和D2D通信间的干扰。蜂窝用户UE在接收到蜂窝信号的同时,不可避免地将收到D2D发送端D1发送的D2D信号,则UE接收到的信号可以表示为:
$${{y}_{\text{UE}}}={{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ UE}}}{{x}_{2}}+{{n}_{\text{UE}}}$$ (1) 式中,信道衰落系数hBS_UE和hD1_UE分别服从高斯分布,hBS_UE~CN(0,σBS_UE2),hD1_UE~CN(0,σD1_UE2);nUE~CN(0,N0)表示高斯噪声。
同理,D2D接收端D2接收到D2D信号的同时,也会收到基站BS发送过来的蜂窝干扰信号,D2接收到的信号可以表示为:
$${{y}_{\text{D2}}}={{h}_{\text{BS }\!\!\_\!\!\text{ D2}}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{x}_{2}}+{{n}_{\text{D2}}}$$ (2) 式中, ${{h}_{\text{BS }\!\!\_\!\!\text{ D2}}}$ ~ $\text{CN}(0,\sigma _{\text{BS }\!\!\_\!\!\text{ D2}}^{2})$ 和 ${{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}$ ~ $\text{CN}(0,\sigma _{\text{D1 }\!\!\_\!\!\text{ D2}}^{2})$ 同样为服从高斯分布的信道衰落系数;nD2为高斯噪声,nD2~ $\text{CN}(0,{{N}_{0}})$ 。
蜂窝用户UE接收到信号yUE后,采用最大似然多用户检测:
$${{({{\hat{x}}_{1}},\text{ }{{\hat{x}}_{2}})}_{\text{UE}}}=\arg \underset{{{x}_{1}},{{x}_{2}}\in {{A}_{x}}}{\mathop{\min }}\,\left\{ {{\left\| {{y}_{\text{UE}}}-{{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{x}_{1}}-{{h}_{\text{D1}\_\text{UE}}}{{x}_{2}} \right\|}^{2}} \right\}$$ (3) 从式(3)可看出,蜂窝用户UE首先必须进行信道估计获得信道衰落系数hBS_UE和hD1_UE,且必须确保hBS_UE≠hD1_UE的基础上,才能正确检测出蜂窝信号 ${{\hat{x}}_{1}}$ 。同样D2D接收端D2准确估计出信道衰落系数hBS_UE和hD1_UE,保证hBS_UE≠hD1_UE,采用最大似然多用户检测同样可以恢复出D2D信号:
$${{({{\hat{x}}_{1}},\text{ }{{\hat{x}}_{2}})}_{\text{D2}}}=\arg \underset{{{x}_{1}},{{x}_{2}}\in {{A}_{x}}}{\mathop{\min }}\,\left\{ {{\left\| {{y}_{\text{D}2}}-{{h}_{\text{BS}\_\text{D}2}}{{x}_{1}}-{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{x}_{2}} \right\|}^{2}} \right\}$$ (4) 通过上述分析,蜂窝通信与D2D通信共用同一蜂窝下行链路频谱进行信息传输,将受到信道衰落系数hBS_UE≠hD1_UE和hBS_D2≠hD1_D2的限制。若hBS_UE=hD1_UE,蜂窝用户UE将无法检测到蜂窝信号 ${{\hat{x}}_{1}}$ ;同样,若hBS_D2=hD1_D2,D2D接收端D2也无法检测到D2D信号 ${{\hat{x}}_{2}}$ ,无法实现蜂窝通信和D2D通信之间的干扰避免。
-
鉴于D2D用户在蜂窝网络中复用蜂窝下行链路频谱进行D2D通信,D2D接收端有可能由于蜂窝信号的干扰无法正确接收到D2D信号,同样也无法确保蜂窝用户在受到D2D信号干扰的情况下能正确接收到蜂窝信号。为此,本文提出一种蜂窝网络中基于复数域网络编码的D2D传输方案,在蜂窝用户处对接收到的蜂窝信号和D2D干扰信号进行复数域网络编码[15-16],并将编码后的复数域编码信号转发给D2D接收端,D2D接收端通过联合最大似然检测恢复出D2D信号。
基于复数域网络编码的D2D传输模型如图 3所示,给基站BS和D2D发送端D1分别分配复数域编码系数θ1和θ2[17-18]。复数域编码系数需要满足如下条件:当n=2k时, ${{\theta }_{i}}={{\text{e}}^{\text{j }\!\!\pi\!\!\text{ }{(4p-1)(i-1)}/{(2n)}\;}}$ ;当n=3×2k时,对任意 $p=1,2,\cdots ,n,{{\theta }_{i}}={{\text{e}}^{\text{j }\!\!\pi\!\!\text{ }{(6p-1)(i-1)}/{(3n)}\;}}$ 。这里基站BS和D2D发送端D1的复数域编码系数θT=[θ1 θ2],则n=2, ${{\theta }_{i}}={{e}^{\text{j }\!\!\pi\!\!\text{ }{(4p-1)(i-1)}/{4}\;}}$ ,其中p=1或者2。时隙1,基站BS向蜂窝用户UE发送复数域编码信号θ1x1,由于D2D通信与蜂窝通信共用蜂窝下行链路频谱,则D2D接收端D2也将接收到基站BS发送的复数域编码信号θ1x1;同样地,D2D发送端D1也采用复数域网络编码,向接收端D2发送复数域编码信号θ2x2,此时蜂窝用户UE也将接收到该编码信号。蜂窝用户UE和D2D接收端D2接收到的信号可以分别表示为:
$${{{y}'}_{\text{UE}}}={{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{\theta }_{1}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ UE}}}{{\theta }_{2}}{{x}_{2}}+{{n}_{\text{UE}}}$$ (5) $${{{y}'}_{\text{D}2}}={{h}_{\text{BS}\_\text{D2}}}{{\theta }_{1}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{\theta }_{2}}{{x}_{2}}+{{n}_{\text{D}2}}$$ (6) 式中,hBS_UE、hD1_UE、hBS_D2和hD1_D2同样为服从高斯分布的信道衰落系数,在信息传输过程中保持不变;nUE和nD2同样为均值为0、方差为的高斯噪声。接收到信号yUE'后,蜂窝用户UE进行最大似然多用户检测:
$${{({{\hat{x}}_{1}},\text{ }{{\hat{x}}_{2}})}_{\text{UE}}}=\arg \underset{{{x}_{1}},{{x}_{2}}\in {{A}_{x}}}{\mathop{\min }}\,\left\{ {{\left\| {{{{y}'}}_{\text{UE}}}-{{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{\theta }_{1}}{{x}_{1}}-{{h}_{\text{D}1\_\text{UE}}}{{\theta }_{2}}{{x}_{2}} \right\|}^{2}} \right\}$$ (7) 蜂窝用户UE对检测到的信号 ${{\hat{x}}_{1}}$ ${{\hat{x}}_{2}}$ ,在时隙2将复数域编码信号 ${{\theta }_{1}}{{\hat{x}}_{1}}+{{\theta }_{2}}{{\hat{x}}_{2}}$ 转发给D2D接收端D2:
$${{{y}''}_{\text{D}2}}={{h}_{\text{UE}\_\text{D}2}}\sqrt{{{\alpha }_{\text{UE}}}}({{\theta }_{1}}{{\hat{x}}_{1}}+{{\theta }_{2}}{{\hat{x}}_{2}})+{{n}_{\text{D}2}}$$ (8) 式中,αUE为功率放大系数,控制蜂窝用户UE转发复数域编码信号 ${{\theta }_{1}}{{\hat{x}}_{1}}+{{\theta }_{2}}{{\hat{x}}_{2}}$ 时的发送功率;hUE_D2为蜂窝用户UE到D2D接收端D2的信道衰落系数,满足hUE_D2~CN(0,σUE_D22)。D2D接收端D2根据时隙1接收到的信号,yD2'和时隙2接收到的yD2''进行联合最大似然检测,得到:
$$\begin{align} & {{({{{\hat{x}}}_{1}},\text{ }{{{\hat{x}}}_{2}})}_{\text{D}2}}=\arg \underset{{{x}_{1}},{{x}_{2}}\in {{A}_{x}}}{\mathop{\min }}\,\left\{ {{\left\| {{{{y}'}}_{D2}}-{{h}_{\text{BS}\_\text{D}2}}{{\theta }_{1}}{{x}_{1}}-{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{\theta }_{2}}{{x}_{2}} \right\|}^{2}} \right.\text{+} \\ & \left. {{\left\| {{{{y}''}}_{\text{D}2}}-{{h}_{\text{UE}\_\text{D}2}}\sqrt{{{\alpha }_{\text{UE}}}}({{\theta }_{1}}{{x}_{1}}+{{\theta }_{2}}{{x}_{2}}) \right\|}^{2}} \right\} \\ \end{align}$$ (9) 通过式(9)可以看到,D2D接收端根据在时隙1接收到的信号yD2'和时隙2接收到的信号yD2'',恢复出了D2D信号 ${{\hat{x}}_{2}}$ 。D2D发送端D1通过D2D通信链路以及蜂窝用户UE的中继链路向接收端D2发送D2D信号,接收端D2通过两条独立路径接收到D2D信号的两个副本,获得两阶分集 增益。根据式(7)和式(9)可以进一步得到,通过对蜂窝信号x1和D2D信号x2进行复数域编码,即使信道衰落系数hBS_UE=hD1_UE且hBS_D2=hD1_D2,蜂窝用户UE和D2D接收端D2都能分别检测到蜂窝信号 ${{\hat{x}}_{1}}$ 和D2D信号 ${{\hat{x}}_{2}}$ ,不受具体信道衰落状态的影响。
-
首先分析基于复数域网络编码的D2D传输方案的系统可达速率,并与传统的D2D传输方案进行对比;再对基于复数域网络编码的D2D传输方案进行实验仿真,得到D2D接收端在不同SINR条件下的SEP,仿真结果证明该方案的SEP低于传统的D2D传输方案。
-
从理论上分析基于复数域网络编码的D2D传输方案和传统的D2D传输方案的系统可达速率。γi表示第i个信道的瞬时SINR,C(γi)表示第i个信道的信道容量,则系统可达速率:
$$R=\frac{1}{T}\sum\limits_{i=1}^{n}{C({{\gamma }_{i}})}$$ (10) 式中,T表示传输过程中需要的总时隙数。
传统的D2D传输方案中,所有传输在同一时隙完成,该时隙内,D2D接收端D2和蜂窝用户UE分别接收到信号:
$${{y}_{\text{D2}}}={{h}_{\text{BS}\_\text{D2}}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{x}_{2}}+{{n}_{\text{D2}}}$$ (11) $${{y}_{\text{UE}}}={{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{x}_{1}}+{{h}_{\text{D1}\_\text{UE}}}{{x}_{2}}+{{n}_{\text{UE}}}$$ (12) 根据式(11)和式(12),可得D1到D2的D2D直达路径以及基站BS到蜂窝用户UE路径上的SINR:
$${{\gamma }_{\text{D1 }\!\!\_\!\!\text{ D2}}}=\frac{{{\left| {{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}} \right|}^{2}}}{{{\left| {{h}_{\text{BS}\_\text{D}2}} \right|}^{2}}+{{N}_{0}}}$$ (13) $${{\gamma }_{\text{BS }\!\!\_\!\!\text{ UE}}}=\frac{{{\left| {{h}_{\text{BS}\_\text{UE}}} \right|}^{2}}}{{{\left| {{h}_{\text{D1}\_\text{UE}}} \right|}^{2}}+{{N}_{0}}}$$ (14) 则传统的D2D传输方案的系统可达速率:
$${{R}_{\text{D2D}}}=C({{\gamma }_{\text{D1 }\!\!\_\!\!\text{ D2}}})+C({{\gamma }_{\text{BS }\!\!\_\!\!\text{ UE}}})$$ (15) 基于复数域网络编码的D2D传输方案中,在时隙1,D2D接收端D2和蜂窝用户UE分别接收到信号:
$${{{y}'}_{\text{D}2}}={{h}_{\text{BS}\_\text{D2}}}{{\theta }_{1}}{{x}_{1}}+{{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}}{{\theta }_{2}}{{x}_{2}}+{{n}_{\text{D2}}}$$ (16) $${{{y}'}_{\text{UE}}}={{h}_{\text{BS }\!\!\_\!\!\text{ UE}}}{{\theta }_{1}}{{x}_{1}}+{{h}_{\text{D1}\_\text{UE}}}{{\theta }_{2}}{{x}_{2}}+{{n}_{\text{UE}}}$$ (17) 则此时D2D发送端D1到接收端D2以及基站BS到蜂窝用户UE路径上的SINR分别为:
$${{{\gamma }'}_{\text{D1 }\!\!\_\!\!\text{ D}2}}=\frac{{{\left| {{h}_{\text{D1 }\!\!\_\!\!\text{ D2}}} \right|}^{2}}}{{{\left| {{h}_{\text{BS}\_\text{D}2}} \right|}^{2}}+{{N}_{0}}}$$ (18) $${{{\gamma }'}_{\text{BS }\!\!\_\!\!\text{ UE}}}=\frac{{{\left| {{h}_{\text{BS }\!\!\_\!\!\text{ UE}}} \right|}^{2}}}{{{\left| {{h}_{\text{D}1\_\text{UE}}} \right|}^{2}}+{{N}_{0}}}$$ (19) 且 ${{{\gamma }'}_{\text{D1 }\!\!\_\!\!\text{ D}2}}={{\gamma }_{\text{D1 }\!\!\_\!\!\text{ D2}}},{{{\gamma }'}_{\text{BS }\!\!\_\!\!\text{ UE}}}={{\gamma }_{\text{BS }\!\!\_\!\!\text{ UE}}}$ 。
蜂窝用户UE对接收到的信号yUE'进行检测得到D2D信号 ${{\hat{x}}_{2}}$ 和蜂窝信号 ${{\hat{x}}_{1}}$ ,对D2D信号 ${{\hat{x}}_{2}}$ 和蜂窝信号 ${{\hat{x}}_{1}}$ 进行复数域网络编码,得到复数域编码信号 ${{\theta }_{1}}{{\hat{x}}_{1}}+{{\theta }_{2}}{{\hat{x}}_{2}}$ ,并在时隙2 将该复数域编码信号通过中继路径转发给D2D接收端D2,此时D2D接收端D2接收到信号:
$${{{y}''}_{\text{D}2}}={{h}_{\text{UE}\_\text{D}2}}\sqrt{{{\alpha }_{\text{UE}}}}({{\theta }_{1}}{{\hat{x}}_{1}}+{{\theta }_{2}}{{\hat{x}}_{2}})+{{n}_{\text{D}2}}$$ (20) 则蜂窝用户UE到D2D接收端D2信道上的SINR为:
$${{{\gamma }'}_{\text{UE}\_\text{D}2}}=\frac{{{\alpha }_{\text{UE}}}{{\left| {{h}_{\text{UE}\_\text{D}2}} \right|}^{2}}}{{{N}_{0}}}$$ (21) 在基于复数域网络编码的D2D传输过程中,基站BS到蜂窝用户UE的蜂窝通信在时隙1即可完成,而D2D通信则需要时隙1和时隙2两个时隙完成,则基于复数域网络编码的D2D传输方案的系统可达速率为:
$${{R}_{\text{D2D}-\text{CFNC}}}=C({{{\gamma }'}_{\text{BS }\!\!\_\!\!\text{ UE}}})+\frac{1}{2}(C({{{\gamma }'}_{\text{D1 }\!\!\_\!\!\text{ D}2}})+C({{{\gamma }'}_{\text{UE}\_\text{D}2}}))$$ (22) 采用C++语言对基于复数域网络编码的D2D传输方案的系统可达速率RD2D-CFNC以及传统的D2D传输方案系统可达速率RD2D进行实验仿真,仿真结果如图 4所示。从图中可以看出,随着SINR的增大,基于复数域网络编码的D2D传输方案和传统的D2D传输方案的系统可达速率都在增加,当SINR增大到10dB以后,相对于基于复数域网络编码的D2D传输方案,传统的D2D传输方案的系统可达速率增加速度缓慢;进一步对比两种方案发现,基于复数域网络编码的D2D传输方案的系统可达速率明显高于传统的D2D传输方案。
-
分别对基于复数域网络编码的D2D传输方案和传统的D2D传输方案的SEP性能进行实验仿真,仿真过程中采用性能最好的BPSK调制,且信干噪比SINR在0~30 dB范围内取值。图 5给出了两种传输方案的SEP仿真曲线,可以看出两种传输方案的SEP都随着SINR的增加而降低,同时编码增益增加;相同SINR条件下,基于复数域网络编码的D2D传输方案的SEP明显小于传统的D2D传输方案。
进一步从理论上对两种传输方案的SEP性能进行分析。在基于复数域网络编码的D2D传输方案中,在蜂窝用户处对蜂窝信号和D2D干扰信号进行复数域网络编码,并将复数域编码信号转发给D2D接收端,D2D接收端通过联合最大似然检测恢复出D2D信号。D2D接收端D2分别通过发送端D1到接收端D2的D2D直达路径,以及经过蜂窝用户UE的中继路径两条独立路径共接收到D2D信号的两个副本,获得两阶分集增益。传统的D2D传输方案,D2D接收端只从D2D发送端D1到接收端D2的直达路径接收到D2D信号的一个副本,获得一阶分集增益。根据上述分析,基于复数域网络编码的D2D传输方案的分集增益性能优于传统的D2D传输方案,其SEP也将明显小于传统的D2D传输方案。
Design of D2D Transmission Scheme Based on Complex Field Network Coding
-
摘要: 终端直通(D2D)用户在复用蜂窝网络频谱资源提高频谱效率的同时,不可避免地会受到蜂窝用户的干扰,为此该文提出一种基于复数域网络编码的D2D传输方案。D2D用户复用蜂窝下行链路频谱,将蜂窝基站和D2D发送端作为两个独立的信源,蜂窝用户作为中继节点。蜂窝用户对检测到的蜂窝信号和D2D信号进行复数域网络编码,D2D接收端采用最大似然多用户检测恢复出D2D信号,消除蜂窝用户对D2D用户的信号干扰。理论分析与仿真结果表明,该方案较传统的D2D传输方案,在确保消除蜂窝信号干扰的同时,能显著提高系统可达速率,降低符号错误概率。Abstract: Terminal users of device-to-device (D2D) communication inevitably will be interfered by cellular users while using multiplexing cellular network spectrum to improve spectrum efficiency. A D2D transmission scheme based on complex field network coding is proposed in this paper. Specifically, as the D2D user multiplexes cellular downlink spectrum, the cellular base station and D2D sender can be regarded as two independent sources, and meanwhile the cellular user as relay node. Moreover, the cellular user encodes the detected cellular signals and D2D signals by complex field network coding, and the D2D receiver can recover D2D signals by adopting maximum likelihood multiuser detection to eliminate cellular signal interference. Theoretical analysis and simulation results show that, compared with traditional D2D transmission schemes, the proposed scheme can improve system achievable rate evidently and reduce symbol error probability, simultaneously ensuring the elimination of cellular signal interference.
-
[1] DOPPLER K, RINNE M, WIJTING C, et al. Device-to-device communication as an underlay to lte-advanced networks[J]. IEEE Communications Magazine, 2009, 47(12):42-49. doi: 10.1109/MCOM.2009.5350367 [2] CHI K, JIANG X, HORIGUCHI S. Network coding-based reliable multicast in wireless networks[J]. Computer Networks, 2010, 54(11):1823-1836. doi: 10.1016/j.comnet.2010.02.010 [3] CHI K, JIANG X, YE B, et al. Efficient network coding-based loss recovery for reliable multicast in wireless networks[J]. IEICE Trans on Communications, 2010, E93-B(4):971-981. doi: 10.1587/transcom.E93.B.971 [4] XU S Y, KWAK K S. Effective interference coordination for D2D underlaying lte networks[C]//IEEE 79th Vehicular Technology Conference (VTC Spring). Seoul:IEEE, 2014:1-5. [5] WANG L F, PENG T, YANG Y F, et al. Interference constrained D2D communication with relay underlaying cellular networks[C]//2013 IEEE 78th Vehicular Technology Conference (VTC Fall). Las Vegas:IEEE, 2013:1-5. [6] MA C, LIU J Q, TIAN X H, et al. Interference exploitation in D2D-enabled cellular networks:a secrecy perspective[J]. IEEE Transactions on Communications, 2015, 63(1):229-242. http://cn.bing.com/academic/profile?id=2086582032&encoded=0&v=paper_preview&mkt=zh-cn [7] GUO B, SUN S H, GAO Q B. Downlink interference management for D2D communication underlying cellular networks[C]//2013 IEEE/CIC International Conference on Communications in China. Xi'an:IEEE, 2013:193-196. [8] ZULHASNINE M, HUANG C C, SRINIVASAN A. Efficient resource allocation for device-to-device communication underlaying lte network[C]//IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications. Niagara Falls:IEEE, 2010:368-375. [9] XU S Y, WANG H M, CHEN T. Effective interference cancellation mechanisms for D2D communication in multi-cell cellular networks[C]//2012 IEEE 75th Vehicular Technology Conference (VTC Spring). Yokohama:IEEE, 2012:1-5. [10] PENG T, LU Q X, WANG H M, et al. Interference avoidance mechanisms in the hybrid cellular and device-to-device systems[C]//2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications. Tokyo:IEEE, 2009:617-621. [11] CHIA HY, TIRKKONEN O, DOPPLER K, et al. On the performance of device-to-device underlay communication with simple power control[C]//IEEE 69th Vehicular Technology Conference. Barcelona:IEEE, 2009:1-5. [12] ODUOLA W O, LI X F, QIAN L J, et al. Power control for device-to-device communications as an underlay to cellular system[C]//2014 IEEE International Conference on Communications (ICC). Sydney:IEEE, 2014:5257-5262. [13] WU Y, WANG J H, QIAN L P, et al. Optimal power control for energy efficient D2D communication and its distributed implementation[J]. IEEE Communications Letters, 2015, 19(5):815-818. doi: 10.1109/LCOMM.2015.2407871 [14] XING H N, HAKOLA S. The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system[C]//2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications. Istanbul:IEEE, 2010:1775-1780. [15] TAIRAN W, GIANNAKIS G B. Complex field network coding for multiuser cooperative communications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(3):561-571. doi: 10.1109/JSAC.2008.4481380 [16] TAIRAN W, GIANNAKIS G B. High-throughput cooperative communications with complex field network coding[C]//41st Annual Conference on Information Sciences and Systems. Baltimore:[s.n.], 2007:253-258. [17] VISHWANATH R, BHATNAGAR M R. Optimum linear constellation precoding for space time wireless systems[J]. Wireless Personal Communications, 2007, 40(4):511-521. doi: 10.1007/s11277-006-9118-6 [18] ELIA P, KUMAR K R, PAWAR S A, et al. Explicit space-time codes that achieve the diversity-multiplexing gain tradeoff[C]//Proceedings of 2005 International Symposium on Information Theory (ISIT 2005). Adelaide:[s.n.], 2005:896-900.