Abstract:
Massive electromagnetic pulses can be generated by the interactions between intensive laser and solid targets in inertial confinement fusion (ICF), which will lead to malfunction of the diagnostic setups and inaccuracy of experimental data. In order to deeply grasp the physical mechanism of electromagnetic pulses and make well preparations for further electromagnetic shielding, it is significant to correctly collect and treat the pulse signals. Due to various interferences, the captured voltage signal is distortion, which needs to be properly treated. The transfer function, derived by deduction and simulation, is deemed as a bridge to interconnect the voltage signal and electric field. Nevertheless, an ill-posed issue in low frequency ranges will be aroused when using the transfer function to obtain electric field. Therefore, we use a Tikhonov regularization method with an L-curve parameter optimization to eliminate the ill-posed issue that is expected to bring about massive noise. To achieve the final electric field, the L-curve diagram is created to optimize the related parameters. The results indicate the L-curve technique can not only resolve the ill-posed problem, but it can also enhance the anti-interference ability.