Abstract:
A parametric stabilization method is proposed for the problem of Hopf bifurcation system control. Compared with the existing methods, the controller designed by this method has a lower controller order and a simpler structure, and it does not contain equilibrium points. The method keeps equilibrium of the origin system unchanged. Under the control, the characteristics of the original system will be improved at equilibrium, and the system states of Hopf bifurcation or chaos can be controlled to stable. Using the Hurwitz criterion, the constraints of the parametric controller are derived. The idea of cylindrical algebraic decomposition (CAD) is employed to compute the constraints to find the parameter ranges of the designed controller, and the controller can be designed to stabilize the system by using any feasible control parameters in the ranges. Taking Lorenz system as an example, the controller design process of the method and numerical simulations are discussed. The simulation results show the effectiveness of the proposed method.