-
新型网络病毒不断涌现,不仅威胁到网络和主机的安全,也威胁着网络用户的信息安全。为了阻止或抑制病毒在网络上的传播,各种免疫策略被提出,如环状免疫、目标免疫、熟人免疫、局部免疫及优先删边免疫等[1-5]。这些免疫策略往往是选择一些重要节点实施免疫,被免疫的节点既不会感染病毒也不会传播病毒。熟人免疫策略有两个针对时序网络的改编版[6]:1) 权重协议,选择与随机选取的节点交互次数最多的节点加入免疫节点集;2) 最近协议,选择与随机选取的节点最后一次交互的节点加入免疫节点集。这些免疫策略实施的一个前提条件是事先收集、分析网络拓扑信息,以确定免疫对象。在时序网络中,节点间的连接是暂时的、反复的且具有阵发性的,即网络结构是不断变化的,故只能根据部分的或是已知的时序网络信息,对节点进行排名,以确定网络节点的重要性。在大型网络中,收集、分析含有时间维度的网络信息,以确定免疫对象十分困难。因此,本文研究无需收集网络拓扑信息,就可以快速实施的免疫策略。
Reseach on Immunization Strategy Based on Random Walk Mechanism in Temporal Networks
-
摘要: 针对传统免疫模型在时序网络中所面临的难以收集、分析网络拓扑信息的困境,提出了基于随机游走机制的免疫策略,一定数量的免疫粒子被随机地分配到网络节点上,当该节点有边激活时,免疫粒子就可以沿着激活边游走到另一节点,获得免疫粒子的节点获得免疫能力,失去免疫粒子的节点转换成非免疫的易感态。根据随机游走者之间在转移时是否相互影响,分别建立了非独立随机游走免疫模型和P_独立随机游走免疫模型。在这两种免疫模型中,免疫粒子传播所需的网络开销受到事先给定的免疫粒子密度的限制。实验表明,这两种随机游走免疫模型可以获得比熟人免疫模型更好的免疫效果,而与目标免疫模型的比较结果取决于网络拓扑结构的异质性程度。Abstract: For the problems of traditional immune models arising in collectingand analyzing network topology information in temporal networks, an immune strategy based on random walk mechanism is put forward and itcan be implemented withoutcollectingnetwork topology information. A certain number of immune particles were randomly assigned to the network nodes.When a nodewith immune particles has one or more activated links,the immune particles on the node will walk to another node along anactivated link of the node.The nodes with immune particlesacquire the immunity,but thenodes losingimmune particleswill betransformed into the susceptible state. Considering whether the random walkers exert impact upon each other when they move, the dependent random walk immune model and the P_independent random walk immune model are established,respectively, in which the network transmission overhead of the immune particle is limited by a given immune particle density. Experiments show the two random walk immune models are characterized by their better immune effects with lower immune particle density and the network overhead when compared with acquaintances immune model. In addition, the comparative result with the target immune model depends on heterogeneity of network topology.
-
Key words:
- burstiness /
- immunization strategy /
- random walk /
- temporal network /
- virus propagation
-
[1] MULLER J, SCHONFISCH B, KIRKILIONIS M. Ring vaccination[J]. J Math Biol, 2000, 41(2):143-171. doi: 10.1007/s002850070003 [2] PASTOR-SATORRAS R, VESPIGNANI A. Immunization of complex networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2002, 65(3 Pt 2A):036104. http://cn.bing.com/academic/profile?id=ea15fe8847bad6a0e2312a7ae29eecd5&encoded=0&v=paper_preview&mkt=zh-cn [3] COHEN R, HAVLIN S, BEN-AVRAHAM D. Efficient immunization strategies for computer networks and populations[J]. Physical Review Letters, 2003, 91(24):247901. doi: 10.1103/PhysRevLett.91.247901 [4] HOLME P. Efficient local strategies for vaccination and network attack[J]. EPL (Europhysics Letters), 2004, 68(6):908. doi: 10.1209/epl/i2004-10286-2 [5] CHEN Y, PAUL G, HAVLIN S, et al. Finding a better immunization strategy[J]. Physical Review Letters, 2008, 101(5):058701. doi: 10.1103/PhysRevLett.101.058701 [6] LEE S, ROCHA L E, LILJEROS F, et al. Exploiting temporal network structures of human interaction to effectively immunize populations[J]. PloS One, 2012, 7(5):e36439. doi: 10.1371/journal.pone.0036439 [7] STARNINI M, BARONCHELLI A, BARRAT A, et al. Random walks on temporal networks[J]. Physical Review E, 2012, 85(5):056115. doi: 10.1103/PhysRevE.85.056115 [8] RIBEIRO B, PERRA N, BARONCHELLI A. Quantifying the effect of temporal resolution on time-varying networks[J]. Scientific Reports, 2013, 3(10):3006. http://cn.bing.com/academic/profile?id=4e02bc091c97352546589d534673c6fd&encoded=0&v=paper_preview&mkt=zh-cn [9] ROCHA L E C, MASUDA N. Random walk centrality for temporal networks[J]. New Journal of Physics, 2014, 16:063023. doi: 10.1088/1367-2630/16/6/063023 [10] HOFFMANN T, PORTER M A, LAMBIOTTE R. Generalized master equations for non-Poisson dynamics on networks[J]. Physical Review E, 2012, 86(4):046102. doi: 10.1103/PhysRevE.86.046102 [11] SPEIDEL L, LAMBIOTTE R, AIHARA K, et al. Steady state and mean recurrence time for random walks on stochastic temporal networks[J]. Physical Review E, 2015, 91:012806. doi: 10.1103/PhysRevE.91.012806 [12] HOFFMANN T, PORTER M A, LAMBIOTTE R. Random walks on stochastic temporal networks[M]//HOLME P, SARAMAKI J. Temporal Networks, Berlin:Springer, 2013:295-313. [13] ROCHA L E, BLONDEL V D. Bursts of vertex activation and epidemics in evolving networks[J]. PLoS Computational Biology, 2013, 9(3):e1002974. doi: 10.1371/journal.pcbi.1002974 [14] LAMBIOTTE R, TABOURIER L, DELVENNE J-C. Burstiness and spreading on temporal networks[J]. European Physical Journal B, 2013, 86(7):1-4. http://cn.bing.com/academic/profile?id=4b100f2d40f641c173dec79b46bf19c8&encoded=0&v=paper_preview&mkt=zh-cn